Update Training/Code/train.py
Browse files- Training/Code/train.py +57 -72
Training/Code/train.py
CHANGED
|
@@ -1,72 +1,57 @@
|
|
| 1 |
-
|
| 2 |
-
import
|
| 3 |
-
|
| 4 |
-
import
|
| 5 |
-
from keras.
|
| 6 |
-
from
|
| 7 |
-
from keras.
|
| 8 |
-
from
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
)
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
#
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
#
|
| 57 |
-
|
| 58 |
-
EarlyStopping(monitor='val_loss', patience=5, restore_best_weights=True),
|
| 59 |
-
ModelCheckpoint('best_model.h5', monitor='val_loss', save_best_only=True)
|
| 60 |
-
]
|
| 61 |
-
|
| 62 |
-
# Train the model
|
| 63 |
-
emotion_model_info = emotion_model.fit(
|
| 64 |
-
train_generator,
|
| 65 |
-
epochs=50,
|
| 66 |
-
validation_data=validation_generator,
|
| 67 |
-
callbacks=callbacks
|
| 68 |
-
)
|
| 69 |
-
|
| 70 |
-
# Save the full model
|
| 71 |
-
emotion_model.save("emotion_model.keras")
|
| 72 |
-
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import numpy as np
|
| 3 |
+
from keras.models import Model
|
| 4 |
+
from keras.layers import Dense, Dropout, GlobalAveragePooling2D, Input
|
| 5 |
+
from keras.optimizers import Adam
|
| 6 |
+
from keras_preprocessing.image import ImageDataGenerator
|
| 7 |
+
from keras.applications import MobileNetV2
|
| 8 |
+
from keras.callbacks import EarlyStopping, ModelCheckpoint
|
| 9 |
+
|
| 10 |
+
# Define paths
|
| 11 |
+
base_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), '../'))
|
| 12 |
+
train_dir = os.path.join(base_dir, 'Data/train')
|
| 13 |
+
val_dir = os.path.join(base_dir, 'Data/test')
|
| 14 |
+
|
| 15 |
+
# Image generators with augmentation
|
| 16 |
+
train_datagen = ImageDataGenerator(
|
| 17 |
+
rescale=1./255,
|
| 18 |
+
rotation_range=30,
|
| 19 |
+
zoom_range=0.2,
|
| 20 |
+
horizontal_flip=True,
|
| 21 |
+
shear_range=0.2,
|
| 22 |
+
width_shift_range=0.2,
|
| 23 |
+
height_shift_range=0.2
|
| 24 |
+
)
|
| 25 |
+
val_datagen = ImageDataGenerator(rescale=1./255)
|
| 26 |
+
|
| 27 |
+
train_generator = train_datagen.flow_from_directory(
|
| 28 |
+
train_dir, target_size=(96, 96), batch_size=32, color_mode='rgb', class_mode='categorical')
|
| 29 |
+
|
| 30 |
+
validation_generator = val_datagen.flow_from_directory(
|
| 31 |
+
val_dir, target_size=(96, 96), batch_size=32, color_mode='rgb', class_mode='categorical')
|
| 32 |
+
|
| 33 |
+
# Load base model
|
| 34 |
+
base_model = MobileNetV2(include_top=False, input_shape=(96, 96, 3), weights='imagenet')
|
| 35 |
+
base_model.trainable = False # Freeze base layers
|
| 36 |
+
|
| 37 |
+
# Add custom layers
|
| 38 |
+
x = base_model.output
|
| 39 |
+
x = GlobalAveragePooling2D()(x)
|
| 40 |
+
x = Dense(256, activation='relu')(x)
|
| 41 |
+
x = Dropout(0.5)(x)
|
| 42 |
+
predictions = Dense(7, activation='softmax')(x)
|
| 43 |
+
|
| 44 |
+
model = Model(inputs=base_model.input, outputs=predictions)
|
| 45 |
+
model.compile(optimizer=Adam(learning_rate=0.0001), loss='categorical_crossentropy', metrics=['accuracy'])
|
| 46 |
+
|
| 47 |
+
# Callbacks
|
| 48 |
+
callbacks = [
|
| 49 |
+
EarlyStopping(monitor='val_loss', patience=5, restore_best_weights=True),
|
| 50 |
+
ModelCheckpoint('best_model.h5', monitor='val_loss', save_best_only=True)
|
| 51 |
+
]
|
| 52 |
+
|
| 53 |
+
# Train the model
|
| 54 |
+
model.fit(train_generator, validation_data=validation_generator, epochs=30, callbacks=callbacks)
|
| 55 |
+
|
| 56 |
+
# Save model
|
| 57 |
+
model.save("emotion_model.keras")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|