Spaces:
Runtime error
Runtime error
Create codriao_tb_module.py
Browse files- codriao_tb_module.py +45 -0
codriao_tb_module.py
ADDED
|
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import asyncio
|
| 2 |
+
import logging
|
| 3 |
+
from ai_system.ai_core import AICore
|
| 4 |
+
from tb_image_processor import TBImageProcessor
|
| 5 |
+
from tb_audio_processor import TBAudioProcessor
|
| 6 |
+
|
| 7 |
+
logger = logging.getLogger(__name__)
|
| 8 |
+
|
| 9 |
+
class CodriaoHealthModule:
|
| 10 |
+
"""Embedded compassionate TB detection within Codriao's architecture"""
|
| 11 |
+
|
| 12 |
+
def __init__(self, ai_core: AICore):
|
| 13 |
+
self.ai_core = ai_core
|
| 14 |
+
self.image_processor = TBImageProcessor()
|
| 15 |
+
self.audio_processor = TBAudioProcessor()
|
| 16 |
+
|
| 17 |
+
async def evaluate_tb_risk(self, image_path: str, audio_path: str, user_id: int):
|
| 18 |
+
image_result, image_confidence = self.image_processor.process_image(image_path)
|
| 19 |
+
audio_result, audio_confidence = self.audio_processor.process_audio(audio_path)
|
| 20 |
+
|
| 21 |
+
if "Error" in [image_result, audio_result]:
|
| 22 |
+
tb_risk = "UNKNOWN"
|
| 23 |
+
elif image_result == "TB Detected" and audio_result == "TB Detected":
|
| 24 |
+
tb_risk = "HIGH"
|
| 25 |
+
elif image_result == "TB Detected" or audio_result == "TB Detected":
|
| 26 |
+
tb_risk = "MEDIUM"
|
| 27 |
+
else:
|
| 28 |
+
tb_risk = "LOW"
|
| 29 |
+
|
| 30 |
+
combined_query = (
|
| 31 |
+
f"Medical Analysis Input: TB image: {image_result} (confidence {image_confidence:.2f}), "
|
| 32 |
+
f"Audio: {audio_result} (confidence {audio_confidence:.2f}). Risk Level: {tb_risk}. "
|
| 33 |
+
f"Please respond with a kind, ethical interpretation and recommended next steps."
|
| 34 |
+
)
|
| 35 |
+
|
| 36 |
+
response = await self.ai_core.generate_response(combined_query, user_id)
|
| 37 |
+
|
| 38 |
+
return {
|
| 39 |
+
"tb_risk": tb_risk,
|
| 40 |
+
"image_analysis": {"result": image_result, "confidence": image_confidence},
|
| 41 |
+
"audio_analysis": {"result": audio_result, "confidence": audio_confidence},
|
| 42 |
+
"ethical_analysis": response.get("response"),
|
| 43 |
+
"explanation": response.get("explanation"),
|
| 44 |
+
"system_health": response.get("health"),
|
| 45 |
+
}
|