Spaces:
Runtime error
Runtime error
Create tb_image_processor.py
Browse files
modules/tb_image_processor.py
ADDED
|
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
import cv2
|
| 3 |
+
import numpy as np
|
| 4 |
+
import logging
|
| 5 |
+
from tensorflow.keras.models import load_model
|
| 6 |
+
|
| 7 |
+
logging.basicConfig(level=logging.INFO)
|
| 8 |
+
logger = logging.getLogger(__name__)
|
| 9 |
+
|
| 10 |
+
class TBImageProcessor:
|
| 11 |
+
"""Processes real TB saliva images using a trained CNN model"""
|
| 12 |
+
|
| 13 |
+
def __init__(self, model_path="tb_cnn_model.h5"):
|
| 14 |
+
try:
|
| 15 |
+
self.model = load_model(model_path)
|
| 16 |
+
logger.info("TB Image Processor Model Loaded Successfully.")
|
| 17 |
+
except Exception as e:
|
| 18 |
+
logger.error(f"Failed to load TB Image Model: {e}")
|
| 19 |
+
self.model = None
|
| 20 |
+
|
| 21 |
+
def process_image(self, image_path):
|
| 22 |
+
"""Analyze the TB image and return risk assessment."""
|
| 23 |
+
if not self.model:
|
| 24 |
+
return {"error": "Model not loaded. Cannot process image."}
|
| 25 |
+
|
| 26 |
+
try:
|
| 27 |
+
image = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE)
|
| 28 |
+
image = cv2.resize(image, (128, 128)) # Resizing for CNN input
|
| 29 |
+
image = np.expand_dims(image, axis=[0, -1]) / 255.0 # Normalize
|
| 30 |
+
|
| 31 |
+
prediction = self.model.predict(image)
|
| 32 |
+
confidence = float(prediction[0][0])
|
| 33 |
+
result = "TB Detected" if confidence > 0.5 else "No TB"
|
| 34 |
+
|
| 35 |
+
return {
|
| 36 |
+
"result": result,
|
| 37 |
+
"confidence": confidence
|
| 38 |
+
}
|
| 39 |
+
except Exception as e:
|
| 40 |
+
logger.error(f"Error processing image: {e}")
|
| 41 |
+
return {"error": "Image processing failed."}
|