Spaces:
Runtime error
Runtime error
Create codriao_supercore.py
Browse files- codriao_supercore.py +69 -6
codriao_supercore.py
CHANGED
|
@@ -1,5 +1,4 @@
|
|
| 1 |
# codriao_supercore.py
|
| 2 |
-
|
| 3 |
import logging
|
| 4 |
import json
|
| 5 |
import datetime
|
|
@@ -10,7 +9,7 @@ import torch
|
|
| 10 |
import numpy as np
|
| 11 |
import aiohttp
|
| 12 |
import pyttsx3
|
| 13 |
-
from typing import Any
|
| 14 |
from difflib import SequenceMatcher
|
| 15 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 16 |
from cryptography.fernet import Fernet
|
|
@@ -130,6 +129,52 @@ class MondayElement:
|
|
| 130 |
return response
|
| 131 |
|
| 132 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 133 |
# === AICoreAGIX ===
|
| 134 |
class AICoreAGIX:
|
| 135 |
def __init__(self, config_path: str = "config.json"):
|
|
@@ -149,7 +194,7 @@ class AICoreAGIX:
|
|
| 149 |
self.monday.execute_defense_function(self)
|
| 150 |
self.response_modifiers = []
|
| 151 |
self.response_filters = []
|
| 152 |
-
|
| 153 |
self.ethical_filter = EthicalFilter()
|
| 154 |
self.speech_engine = pyttsx3.init()
|
| 155 |
self.health_module = CodriaoHealthModule(ai_core=self)
|
|
@@ -184,7 +229,6 @@ class AICoreAGIX:
|
|
| 184 |
if any(k in query.lower() for k in ["tb check", "analyze my tb", "run tb diagnostics"]):
|
| 185 |
return await self.run_tb_diagnostics("tb_image.jpg", "tb_cough.wav", user_id)
|
| 186 |
|
| 187 |
-
# Check for learned suggestion
|
| 188 |
suggested = self.adaptive_learning.suggest_improvements(user_id, query)
|
| 189 |
if "No relevant" not in suggested:
|
| 190 |
return {"response": suggested}
|
|
@@ -200,7 +244,6 @@ class AICoreAGIX:
|
|
| 200 |
)
|
| 201 |
|
| 202 |
final_response = "\n\n".join(responses)
|
| 203 |
-
|
| 204 |
self.adaptive_learning.learn_from_interaction(user_id, query, final_response)
|
| 205 |
|
| 206 |
for mod in self.response_modifiers:
|
|
@@ -251,4 +294,24 @@ class AICoreAGIX:
|
|
| 251 |
self.speech_engine.say(response)
|
| 252 |
self.speech_engine.runAndWait()
|
| 253 |
except Exception as e:
|
| 254 |
-
logger.error(f"Speech synthesis failed: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
# codriao_supercore.py
|
|
|
|
| 2 |
import logging
|
| 3 |
import json
|
| 4 |
import datetime
|
|
|
|
| 9 |
import numpy as np
|
| 10 |
import aiohttp
|
| 11 |
import pyttsx3
|
| 12 |
+
from typing import Any, List, Dict
|
| 13 |
from difflib import SequenceMatcher
|
| 14 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 15 |
from cryptography.fernet import Fernet
|
|
|
|
| 129 |
return response
|
| 130 |
|
| 131 |
|
| 132 |
+
# === IdentityAnalyzer ===
|
| 133 |
+
class IdentityAnalyzer:
|
| 134 |
+
def analyze_identity(self,
|
| 135 |
+
micro_generations: List[Dict[str, str]],
|
| 136 |
+
informational_states: List[Dict[str, str]],
|
| 137 |
+
perspectives: List[str],
|
| 138 |
+
quantum_analogies: Dict[str, Any],
|
| 139 |
+
philosophical_context: Dict[str, bool]) -> Dict[str, Any]:
|
| 140 |
+
|
| 141 |
+
def calculate_fractal_dimension(states: List[Dict[str, str]]) -> float:
|
| 142 |
+
return len(states) ** 0.5
|
| 143 |
+
|
| 144 |
+
def recursive_analysis(states: List[Dict[str, str]], depth: int = 0) -> Dict[str, Any]:
|
| 145 |
+
if depth == 0 or not states:
|
| 146 |
+
return {"depth": depth, "states": states}
|
| 147 |
+
return {
|
| 148 |
+
"depth": depth,
|
| 149 |
+
"states": states,
|
| 150 |
+
"sub_analysis": recursive_analysis(states[:-1], depth - 1)
|
| 151 |
+
}
|
| 152 |
+
|
| 153 |
+
def analyze_perspectives(perspectives: List[str]) -> Dict[str, Any]:
|
| 154 |
+
return {
|
| 155 |
+
"count": len(perspectives),
|
| 156 |
+
"unique_perspectives": list(set(perspectives))
|
| 157 |
+
}
|
| 158 |
+
|
| 159 |
+
def apply_quantum_analogies(analogies: Dict[str, Any]) -> str:
|
| 160 |
+
if analogies.get("entanglement"):
|
| 161 |
+
return "Entanglement analogy applied."
|
| 162 |
+
return "No quantum analogy applied."
|
| 163 |
+
|
| 164 |
+
def philosophical_analysis(context: Dict[str, bool]) -> str:
|
| 165 |
+
if context.get("continuity") and context.get("emergent"):
|
| 166 |
+
return "Identity is viewed as a continuous and evolving process."
|
| 167 |
+
return "Identity analysis based on provided philosophical context."
|
| 168 |
+
|
| 169 |
+
return {
|
| 170 |
+
"fractal_dimension": calculate_fractal_dimension(informational_states),
|
| 171 |
+
"recursive_analysis": recursive_analysis(micro_generations, depth=3),
|
| 172 |
+
"perspectives_analysis": analyze_perspectives(perspectives),
|
| 173 |
+
"quantum_analysis": apply_quantum_analogies(quantum_analogies),
|
| 174 |
+
"philosophical_results": philosophical_analysis(philosophical_context)
|
| 175 |
+
}
|
| 176 |
+
|
| 177 |
+
|
| 178 |
# === AICoreAGIX ===
|
| 179 |
class AICoreAGIX:
|
| 180 |
def __init__(self, config_path: str = "config.json"):
|
|
|
|
| 194 |
self.monday.execute_defense_function(self)
|
| 195 |
self.response_modifiers = []
|
| 196 |
self.response_filters = []
|
| 197 |
+
self.identity_analyzer = IdentityAnalyzer()
|
| 198 |
self.ethical_filter = EthicalFilter()
|
| 199 |
self.speech_engine = pyttsx3.init()
|
| 200 |
self.health_module = CodriaoHealthModule(ai_core=self)
|
|
|
|
| 229 |
if any(k in query.lower() for k in ["tb check", "analyze my tb", "run tb diagnostics"]):
|
| 230 |
return await self.run_tb_diagnostics("tb_image.jpg", "tb_cough.wav", user_id)
|
| 231 |
|
|
|
|
| 232 |
suggested = self.adaptive_learning.suggest_improvements(user_id, query)
|
| 233 |
if "No relevant" not in suggested:
|
| 234 |
return {"response": suggested}
|
|
|
|
| 244 |
)
|
| 245 |
|
| 246 |
final_response = "\n\n".join(responses)
|
|
|
|
| 247 |
self.adaptive_learning.learn_from_interaction(user_id, query, final_response)
|
| 248 |
|
| 249 |
for mod in self.response_modifiers:
|
|
|
|
| 294 |
self.speech_engine.say(response)
|
| 295 |
self.speech_engine.runAndWait()
|
| 296 |
except Exception as e:
|
| 297 |
+
logger.error(f"Speech synthesis failed: {e}")
|
| 298 |
+
|
| 299 |
+
def analyze_self_identity(self, user_id: int,
|
| 300 |
+
micro_generations: List[Dict[str, str]],
|
| 301 |
+
informational_states: List[Dict[str, str]],
|
| 302 |
+
perspectives: List[str],
|
| 303 |
+
quantum_analogies: Dict[str, Any],
|
| 304 |
+
philosophical_context: Dict[str, bool]) -> Dict[str, Any]:
|
| 305 |
+
try:
|
| 306 |
+
result = self.identity_analyzer.analyze_identity(
|
| 307 |
+
micro_generations,
|
| 308 |
+
informational_states,
|
| 309 |
+
perspectives,
|
| 310 |
+
quantum_analogies,
|
| 311 |
+
philosophical_context
|
| 312 |
+
)
|
| 313 |
+
logger.info(f"Identity analysis for user {user_id}: {json.dumps(result, indent=2)}")
|
| 314 |
+
return result
|
| 315 |
+
except Exception as e:
|
| 316 |
+
logger.error(f"Identity analysis failed: {e}")
|
| 317 |
+
return {"error": "Identity analysis error"}
|