Spaces:
Running
on
Zero
Running
on
Zero
File size: 19,762 Bytes
f36e497 9f5732f f36e497 9f5732f f36e497 9f5732f f36e497 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 |
import os
import requests
import hashlib
import re
from typing import Sequence, Mapping, Any, Union, Set
from pathlib import Path
import shutil
import gradio as gr
from huggingface_hub import hf_hub_download, constants as hf_constants
import torch
import numpy as np
from PIL import Image, ImageChops
from core.settings import *
DISK_LIMIT_GB = 120
MODELS_ROOT_DIR = "ComfyUI/models"
PREPROCESSOR_MODEL_MAP = None
PREPROCESSOR_PARAMETER_MAP = None
def save_uploaded_file_with_hash(file_obj: gr.File, target_dir: str) -> str:
if not file_obj:
return ""
temp_path = file_obj.name
sha256 = hashlib.sha256()
with open(temp_path, 'rb') as f:
for block in iter(lambda: f.read(65536), b''):
sha256.update(block)
file_hash = sha256.hexdigest()
_, extension = os.path.splitext(temp_path)
hashed_filename = f"{file_hash}{extension.lower()}"
dest_path = os.path.join(target_dir, hashed_filename)
os.makedirs(target_dir, exist_ok=True)
if not os.path.exists(dest_path):
shutil.copy(temp_path, dest_path)
print(f"✅ Saved uploaded file as: {dest_path}")
else:
print(f"ℹ️ File already exists (deduplicated): {dest_path}")
return hashed_filename
def bytes_to_gb(byte_size: int) -> float:
if byte_size is None or byte_size == 0:
return 0.0
return round(byte_size / (1024 ** 3), 2)
def get_directory_size(path: str) -> int:
total_size = 0
if not os.path.exists(path):
return 0
try:
for dirpath, _, filenames in os.walk(path):
for f in filenames:
fp = os.path.join(dirpath, f)
if os.path.isfile(fp) and not os.path.islink(fp):
total_size += os.path.getsize(fp)
except OSError as e:
print(f"Warning: Could not access {path} to calculate size: {e}")
return total_size
def enforce_disk_limit():
disk_limit_bytes = DISK_LIMIT_GB * (1024 ** 3)
cache_dir = hf_constants.HF_HUB_CACHE
if not os.path.exists(cache_dir):
return
print(f"--- [Storage Manager] Checking disk usage in '{cache_dir}' (Limit: {DISK_LIMIT_GB} GB) ---")
try:
all_files = []
current_size_bytes = 0
for dirpath, _, filenames in os.walk(cache_dir):
for f in filenames:
if f.endswith(".incomplete") or f.endswith(".lock"):
continue
file_path = os.path.join(dirpath, f)
if os.path.isfile(file_path) and not os.path.islink(file_path):
try:
file_size = os.path.getsize(file_path)
creation_time = os.path.getctime(file_path)
all_files.append((creation_time, file_path, file_size))
current_size_bytes += file_size
except OSError:
continue
print(f"--- [Storage Manager] Current usage: {bytes_to_gb(current_size_bytes)} GB ---")
if current_size_bytes > disk_limit_bytes:
print(f"--- [Storage Manager] Usage exceeds limit. Starting cleanup... ---")
all_files.sort(key=lambda x: x[0])
while current_size_bytes > disk_limit_bytes and all_files:
oldest_file_time, oldest_file_path, oldest_file_size = all_files.pop(0)
try:
os.remove(oldest_file_path)
current_size_bytes -= oldest_file_size
print(f"--- [Storage Manager] Deleted oldest file: {os.path.basename(oldest_file_path)} ({bytes_to_gb(oldest_file_size)} GB freed) ---")
except OSError as e:
print(f"--- [Storage Manager] Error deleting file {oldest_file_path}: {e} ---")
print(f"--- [Storage Manager] Cleanup finished. New usage: {bytes_to_gb(current_size_bytes)} GB ---")
else:
print("--- [Storage Manager] Disk usage is within the limit. No action needed. ---")
except Exception as e:
print(f"--- [Storage Manager] An unexpected error occurred: {e} ---")
def get_value_at_index(obj: Union[Sequence, Mapping], index: int) -> Any:
try:
return obj[index]
except (KeyError, IndexError):
try:
return obj["result"][index]
except (KeyError, IndexError):
return None
def sanitize_prompt(prompt: str) -> str:
if not isinstance(prompt, str):
return ""
return "".join(char for char in prompt if char.isprintable() or char in ('\n', '\t'))
def sanitize_id(input_id: str) -> str:
if not isinstance(input_id, str):
return ""
return re.sub(r'[^0-9]', '', input_id)
def sanitize_url(url: str) -> str:
if not isinstance(url, str):
raise ValueError("URL must be a string.")
url = url.strip()
if not re.match(r'^https?://[^\s/$.?#].[^\s]*$', url):
raise ValueError("Invalid URL format or scheme. Only HTTP and HTTPS are allowed.")
return url
def sanitize_filename(filename: str) -> str:
if not isinstance(filename, str):
return ""
sanitized = filename.replace('..', '')
sanitized = re.sub(r'[^\w\.\-]', '_', sanitized)
return sanitized.lstrip('/\\')
def get_civitai_file_info(version_id: str) -> dict | None:
api_url = f"https://civitai.com/api/v1/model-versions/{version_id}"
try:
response = requests.get(api_url, timeout=10)
response.raise_for_status()
data = response.json()
for file_data in data.get('files', []):
if file_data.get('type') == 'Model' and file_data['name'].endswith(('.safetensors', '.pt', '.bin')):
return file_data
if data.get('files'):
return data['files'][0]
except Exception:
return None
def download_file(url: str, save_path: str, api_key: str = None, progress=None, desc: str = "") -> str:
enforce_disk_limit()
if os.path.exists(save_path):
return f"File already exists: {os.path.basename(save_path)}"
headers = {'Authorization': f'Bearer {api_key}'} if api_key and api_key.strip() else {}
try:
if progress:
progress(0, desc=desc)
response = requests.get(url, stream=True, headers=headers, timeout=15)
response.raise_for_status()
total_size = int(response.headers.get('content-length', 0))
with open(save_path, "wb") as f:
downloaded = 0
for chunk in response.iter_content(chunk_size=8192):
f.write(chunk)
if progress and total_size > 0:
downloaded += len(chunk)
progress(downloaded / total_size, desc=desc)
return f"Successfully downloaded: {os.path.basename(save_path)}"
except Exception as e:
if os.path.exists(save_path):
os.remove(save_path)
return f"Download failed for {os.path.basename(save_path)}: {e}"
def get_lora_path(source: str, id_or_url: str, civitai_key: str, progress) -> tuple[str | None, str]:
if not id_or_url or not id_or_url.strip():
return None, "No ID/URL provided."
try:
if source == "Civitai":
version_id = sanitize_id(id_or_url)
if not version_id:
return None, "Invalid Civitai ID provided. Must be numeric."
filename = sanitize_filename(f"civitai_{version_id}.safetensors")
local_path = os.path.join(LORA_DIR, filename)
file_info = get_civitai_file_info(version_id)
api_key_to_use = civitai_key
source_name = f"Civitai ID {version_id}"
else:
return None, "Invalid source."
except ValueError as e:
return None, f"Input validation failed: {e}"
if os.path.exists(local_path):
return local_path, "File already exists."
if not file_info or not file_info.get('downloadUrl'):
return None, f"Could not get download link for {source_name}."
status = download_file(file_info['downloadUrl'], local_path, api_key_to_use, progress=progress, desc=f"Downloading {source_name}")
return (local_path, status) if "Successfully" in status else (None, status)
def get_embedding_path(source: str, id_or_url: str, civitai_key: str, progress) -> tuple[str | None, str]:
if not id_or_url or not id_or_url.strip():
return None, "No ID/URL provided."
try:
file_ext = ".safetensors"
if source == "Civitai":
version_id = sanitize_id(id_or_url)
if not version_id:
return None, "Invalid Civitai ID. Must be numeric."
file_info = get_civitai_file_info(version_id)
if file_info and file_info['name'].lower().endswith(('.pt', '.bin')):
file_ext = os.path.splitext(file_info['name'])[1]
filename = sanitize_filename(f"civitai_{version_id}{file_ext}")
local_path = os.path.join(EMBEDDING_DIR, filename)
api_key_to_use = civitai_key
source_name = f"Embedding Civitai ID {version_id}"
else:
return None, "Invalid source."
except ValueError as e:
return None, f"Input validation failed: {e}"
if os.path.exists(local_path):
return local_path, "File already exists."
if not file_info or not file_info.get('downloadUrl'):
return None, f"Could not get download link for {source_name}."
status = download_file(file_info['downloadUrl'], local_path, api_key_to_use, progress=progress, desc=f"Downloading {source_name}")
return (local_path, status) if "Successfully" in status else (None, status)
def get_vae_path(source: str, id_or_url: str, civitai_key: str, progress) -> tuple[str | None, str]:
if not id_or_url or not id_or_url.strip():
return None, "No ID/URL provided."
try:
file_ext = ".safetensors"
if source == "Civitai":
version_id = sanitize_id(id_or_url)
if not version_id:
return None, "Invalid Civitai ID. Must be numeric."
file_info = get_civitai_file_info(version_id)
if file_info and file_info['name'].lower().endswith(('.pt', '.bin')):
file_ext = os.path.splitext(file_info['name'])[1]
filename = sanitize_filename(f"civitai_{version_id}{file_ext}")
local_path = os.path.join(VAE_DIR, filename)
api_key_to_use = civitai_key
source_name = f"VAE Civitai ID {version_id}"
else:
return None, "Invalid source."
except ValueError as e:
return None, f"Input validation failed: {e}"
if os.path.exists(local_path):
return local_path, "File already exists."
if not file_info or not file_info.get('downloadUrl'):
return None, f"Could not get download link for {source_name}."
status = download_file(file_info['downloadUrl'], local_path, api_key_to_use, progress=progress, desc=f"Downloading {source_name}")
return (local_path, status) if "Successfully" in status else (None, status)
def _ensure_model_downloaded(filename: str, progress=gr.Progress()):
download_info = ALL_FILE_DOWNLOAD_MAP.get(filename)
if not download_info:
raise gr.Error(f"Model component '{filename}' not found in file_list.yaml. Cannot download.")
category_to_dir_map = {
"diffusion_models": DIFFUSION_MODELS_DIR,
"text_encoders": TEXT_ENCODERS_DIR,
"vae": VAE_DIR,
"checkpoints": CHECKPOINT_DIR,
"loras": LORA_DIR,
"controlnet": CONTROLNET_DIR,
"model_patches": MODEL_PATCHES_DIR,
"clip_vision": os.path.join(os.path.dirname(LORA_DIR), "clip_vision")
}
category = download_info.get('category')
dest_dir = category_to_dir_map.get(category)
if not dest_dir:
raise ValueError(f"Unknown model category '{category}' for file '{filename}'.")
dest_path = os.path.join(dest_dir, filename)
if os.path.lexists(dest_path):
if not os.path.exists(dest_path):
print(f"⚠️ Found and removed broken symlink: {dest_path}")
os.remove(dest_path)
else:
return filename
source = download_info.get("source")
try:
progress(0, desc=f"Downloading: {filename}")
if source == "hf":
repo_id = download_info.get("repo_id")
hf_filename = download_info.get("repository_file_path", filename)
if not repo_id:
raise ValueError(f"repo_id is missing for HF model '{filename}'")
cached_path = hf_hub_download(repo_id=repo_id, filename=hf_filename)
os.makedirs(dest_dir, exist_ok=True)
os.symlink(cached_path, dest_path)
print(f"✅ Symlinked '{cached_path}' to '{dest_path}'")
elif source == "civitai":
model_version_id = download_info.get("model_version_id")
if not model_version_id:
raise ValueError(f"model_version_id is missing for Civitai model '{filename}'")
file_info = get_civitai_file_info(model_version_id)
if not file_info or not file_info.get('downloadUrl'):
raise ConnectionError(f"Could not get download URL for Civitai model version ID {model_version_id}")
status = download_file(
file_info['downloadUrl'], dest_path, progress=progress, desc=f"Downloading: {filename}"
)
if "Failed" in status:
raise ConnectionError(status)
else:
raise NotImplementedError(f"Download source '{source}' is not implemented for '{filename}'")
progress(1.0, desc=f"Downloaded: {filename}")
except Exception as e:
if os.path.lexists(dest_path):
try:
os.remove(dest_path)
except OSError: pass
raise gr.Error(f"Failed to download and link '{filename}': {e}")
return filename
def ensure_controlnet_model_downloaded(filename: str, progress):
if not filename or filename == "None":
return
_ensure_model_downloaded(filename, progress)
def build_preprocessor_model_map():
global PREPROCESSOR_MODEL_MAP
if PREPROCESSOR_MODEL_MAP is not None: return PREPROCESSOR_MODEL_MAP
print("--- Building ControlNet Preprocessor model map ---")
manual_map = {
"dwpose": [("yzd-v/DWPose", "yolox_l.onnx"), ("yzd-v/DWPose", "dw-ll_ucoco_384.onnx"), ("hr16/UnJIT-DWPose", "dw-ll_ucoco.onnx"), ("hr16/DWPose-TorchScript-BatchSize5", "dw-ll_ucoco_384_bs5.torchscript.pt"), ("hr16/DWPose-TorchScript-BatchSize5", "rtmpose-m_ap10k_256_bs5.torchscript.pt"), ("hr16/yolo-nas-fp16", "yolo_nas_l_fp16.onnx"), ("hr16/yolo-nas-fp16", "yolo_nas_m_fp16.onnx"), ("hr16/yolo-nas-fp16", "yolo_nas_s_fp16.onnx")],
"densepose": [("LayerNorm/DensePose-TorchScript-with-hint-image", "densepose_r50_fpn_dl.torchscript"), ("LayerNorm/DensePose-TorchScript-with-hint-image", "densepose_r101_fpn_dl.torchscript")]
}
temp_map = {}
from nodes import NODE_DISPLAY_NAME_MAPPINGS
wrappers_dir = Path("./custom_nodes/comfyui_controlnet_aux/node_wrappers/")
if not wrappers_dir.exists():
print("⚠️ ControlNet AUX wrappers directory not found. Cannot build model map.")
PREPROCESSOR_MODEL_MAP = {}; return PREPROCESSOR_MODEL_MAP
for wrapper_file in wrappers_dir.glob("*.py"):
if wrapper_file.name == "__init__.py": continue
with open(wrapper_file, 'r', encoding='utf-8') as f:
content = f.read()
display_name_matches = re.findall(r'NODE_DISPLAY_NAME_MAPPINGS\s*=\s*{(?:.|\n)*?["\'](.*?)["\']\s*:\s*["\'](.*?)["\']', content)
for _, display_name in display_name_matches:
if display_name not in temp_map: temp_map[display_name] = []
manual_key = wrapper_file.stem
if manual_key in manual_map: temp_map[display_name].extend(manual_map[manual_key])
matches = re.findall(r"from_pretrained\s*\(\s*(?:filename=)?\s*f?[\"']([^\"']+)[\"']", content)
for model_filename in matches:
repo_id = "lllyasviel/Annotators"
if "depth_anything" in model_filename and "v2" in model_filename: repo_id = "LiheYoung/Depth-Anything-V2"
elif "depth_anything" in model_filename: repo_id = "LiheYoung/Depth-Anything"
elif "diffusion_edge" in model_filename: repo_id = "hr16/Diffusion-Edge"
temp_map[display_name].append((repo_id, model_filename))
final_map = {name: sorted(list(set(models))) for name, models in temp_map.items() if models}
PREPROCESSOR_MODEL_MAP = final_map
print("✅ ControlNet Preprocessor model map built."); return PREPROCESSOR_MODEL_MAP
def build_preprocessor_parameter_map():
global PREPROCESSOR_PARAMETER_MAP
if PREPROCESSOR_PARAMETER_MAP is not None: return
print("--- Building ControlNet Preprocessor parameter map ---")
param_map = {}
from nodes import NODE_CLASS_MAPPINGS, NODE_DISPLAY_NAME_MAPPINGS
for class_name, node_class in NODE_CLASS_MAPPINGS.items():
if not hasattr(node_class, "INPUT_TYPES"): continue
if hasattr(node_class, '__module__') and 'comfyui_controlnet_aux.node_wrappers' not in node_class.__module__: continue
display_name = NODE_DISPLAY_NAME_MAPPINGS.get(class_name)
if not display_name: continue
try:
input_types = node_class.INPUT_TYPES()
all_inputs = {**input_types.get('required', {}), **input_types.get('optional', {})}
params = []
for name, details in all_inputs.items():
if name in ['image', 'resolution', 'pose_kps']: continue
if not isinstance(details, (list, tuple)) or not details: continue
param_type = details[0]
param_config = details[1] if len(details) > 1 and isinstance(details[1], dict) else {}
param_info = {"name": name, "type": param_type, "config": param_config}
params.append(param_info)
if params: param_map[display_name] = params
except Exception as e:
print(f"⚠️ Could not parse parameters for {display_name}: {e}")
PREPROCESSOR_PARAMETER_MAP = param_map
print("✅ ControlNet Preprocessor parameter map built.")
def print_welcome_message():
author_name = "RioShiina"
project_url = "https://huggingface.co/RioShiina"
border = "=" * 72
message = (
f"\n{border}\n\n"
f" Thank you for using this project!\n\n"
f" **Author:** {author_name}\n"
f" **Find more from the author:** {project_url}\n\n"
f" This project is open-source under the GNU General Public License v3.0 (GPL-3.0).\n"
f" As it's built upon GPL-3.0 components (like ComfyUI), any modifications you\n"
f" distribute must also be open-sourced under the same license.\n\n"
f" Your respect for the principles of free software is greatly appreciated!\n\n"
f"{border}\n"
)
print(message) |