Update app.py
Browse files
app.py
CHANGED
|
@@ -1096,17 +1096,8 @@ for company in companies:
|
|
| 1096 |
# Strategy B: Regression (only Tesla & Microsoft)
|
| 1097 |
# df_c['StrategyB_Daily'] = df_c['Predicted']*df_c['PctChangeDaily']*df_c[f'Close_{TICKERS[company]}']
|
| 1098 |
# df_c['StrategyB_Cumulative'] = df_c['StrategyB_Daily'].cumsum()
|
| 1099 |
-
|
| 1100 |
-
# --- CLEANUP & KEEP ONLY NEEDED COLUMNS ---
|
| 1101 |
-
keep_cols = [
|
| 1102 |
-
"Date", "Company", "Title", "Summary",
|
| 1103 |
-
"Sentiment", "Confidence",
|
| 1104 |
-
f"Close_{TICKERS[company]}", "PctChangeDaily",
|
| 1105 |
-
"StrategyA_Daily", "StrategyA_Cumulative"
|
| 1106 |
-
]
|
| 1107 |
-
|
| 1108 |
|
| 1109 |
-
df_c = df_c[keep_cols]
|
| 1110 |
|
| 1111 |
dfs_final[company] = df_c
|
| 1112 |
|
|
|
|
| 1096 |
# Strategy B: Regression (only Tesla & Microsoft)
|
| 1097 |
# df_c['StrategyB_Daily'] = df_c['Predicted']*df_c['PctChangeDaily']*df_c[f'Close_{TICKERS[company]}']
|
| 1098 |
# df_c['StrategyB_Cumulative'] = df_c['StrategyB_Daily'].cumsum()
|
| 1099 |
+
df_c = df_c.drop(columns=["date", "date_merge"], errors="ignore")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1100 |
|
|
|
|
| 1101 |
|
| 1102 |
dfs_final[company] = df_c
|
| 1103 |
|