Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import random | |
| import requests | |
| # Template | |
| title = "A conversation with Gandalf (GPTJ-6B) π§" | |
| description = "" | |
| article = """ | |
| <p> To reset you <b>need to reload the page.</b> </p> | |
| <p> If you liked don't forget to π the project π₯° </p> | |
| <h2> Parameters: </h2> | |
| <ul> | |
| <li><i>top_p</i>: control how deterministic the model is in generating a response.</li> | |
| <li><i>temperature</i>: (sampling temperature) higher values means the model will take more risks.</li> | |
| <li><i>max_new_tokens</i>: Max number of tokens in generation.</li> | |
| </ul> | |
| <img src='http://www.simoninithomas.com/test/gandalf.jpg', alt="Gandalf"/>""" | |
| theme="huggingface" | |
| examples = [[0.9, 1.1, 50, "Hey Gandalf! How are you?"], [0.9, 1.1, 50, "Hey Gandalf, why you didn't use the great eagles to fly Frodo to Mordor?"]] | |
| # GPT-J-6B API | |
| API_URL = "https://api-inference.huggingface.co/models/EleutherAI/gpt-j-6B" | |
| def query(payload): | |
| response = requests.post(API_URL, json=payload) | |
| return response.json() | |
| context_setup = "The following is a conversation with Gandalf, the mage of 'the Lord of the Rings'" | |
| context=context_setup | |
| interlocutor_names = ["Human", "Gandalf"] | |
| # Builds the prompt from what previously happened | |
| def build_prompt(conversation, context): | |
| prompt = context + "\n" | |
| for user_msg, resp_msg in conversation: | |
| line = "\n- " + interlocutor_names[0] + ":" + user_msg | |
| prompt += line | |
| line = "\n- " + interlocutor_names[1] + ":" + resp_msg | |
| prompt += line | |
| prompt += "" | |
| return prompt | |
| # Attempt to recognize what the model said, if it used the correct format | |
| def clean_chat_output(txt, prompt): | |
| delimiter = "\n- "+interlocutor_names[0] | |
| output = txt.replace(prompt, '') | |
| output = output[:output.find(delimiter)] | |
| return output | |
| def chat(top_p, temperature, max_new_tokens, message): | |
| history = gr.get_state() or [] | |
| history.append((message, "")) | |
| gr.set_state(history) | |
| conversation = history | |
| prompt = build_prompt(conversation, context) | |
| # Build JSON | |
| json_ = {"inputs": prompt, | |
| "parameters": | |
| { | |
| "top_p": top_p, | |
| "temperature": temperature, | |
| "max_new_tokens": max_new_tokens, | |
| "return_full_text": False | |
| }} | |
| output = query(json_) | |
| output = output[0]['generated_text'] | |
| answer = clean_chat_output(output, prompt) | |
| response = answer | |
| history[-1] = (message, response) | |
| gr.set_state(history) | |
| html = "<div class='chatbot'>" | |
| for user_msg, resp_msg in history: | |
| html += f"<div class='user_msg'>{user_msg}</div>" | |
| html += f"<div class='resp_msg'>{resp_msg}</div>" | |
| html += "</div>" | |
| return html | |
| iface = gr.Interface( | |
| chat, | |
| [ | |
| gr.inputs.Slider(minimum=0.5, maximum=1, step=0.05, default=0.9, label="top_p"), | |
| gr.inputs.Slider(minimum=0.5, maximum=1.5, step=0.1, default=1.1, label="temperature"), | |
| gr.inputs.Slider(minimum=20, maximum=250, step=10, default=50, label="max_new_tokens"), | |
| "text", | |
| ], | |
| "html", css=""" | |
| .chatbox {display:flex;flex-direction:column} | |
| .user_msg, .resp_msg {padding:4px;margin-bottom:4px;border-radius:4px;width:80%} | |
| .user_msg {background-color:cornflowerblue;color:white;align-self:start} | |
| .resp_msg {background-color:lightgray;align-self:self-end} | |
| """, allow_screenshot=True, | |
| allow_flagging=True, | |
| title=title, | |
| article=article, | |
| theme=theme, | |
| examples=examples) | |
| if __name__ == "__main__": | |
| iface.launch() | |