Spaces:
Runtime error
Runtime error
add interface logic and debug print and text extraction logic
Browse files- app.py +113 -18
- config.json +237 -0
app.py
CHANGED
|
@@ -8,6 +8,79 @@ import matplotlib.pyplot as plt
|
|
| 8 |
import matplotlib.patches as patches
|
| 9 |
import numpy as np
|
| 10 |
import random
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 13 |
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
|
@@ -16,18 +89,19 @@ model = Florence2ForConditionalGeneration.from_pretrained("PleIAs/Florence-PDF",
|
|
| 16 |
processor = AutoProcessor.from_pretrained("PleIAs/Florence-PDF", trust_remote_code=True)
|
| 17 |
|
| 18 |
TASK_PROMPTS = {
|
| 19 |
-
"Caption": "<CAPTION>",
|
| 20 |
-
"
|
| 21 |
-
"
|
| 22 |
-
"Object Detection": "<OD>",
|
| 23 |
-
"Dense Region Caption": "<DENSE_REGION_CAPTION>",
|
| 24 |
-
"OCR": "<OCR>",
|
| 25 |
-
"OCR with Region": "<OCR_WITH_REGION>",
|
| 26 |
-
"Region Proposal": "<REGION_PROPOSAL>"
|
| 27 |
}
|
| 28 |
|
| 29 |
-
|
| 30 |
-
|
|
|
|
| 31 |
|
| 32 |
colormap = ['blue','orange','green','purple','brown','pink','gray','olive','cyan','red',
|
| 33 |
'lime','indigo','violet','aqua','magenta','coral','gold','tan','skyblue']
|
|
@@ -65,39 +139,60 @@ def draw_ocr_bboxes(image, prediction):
|
|
| 65 |
|
| 66 |
def process_image(image, task):
|
| 67 |
prompt = TASK_PROMPTS[task]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
inputs = processor(text=prompt, images=image, return_tensors="pt").to(device, torch_dtype)
|
| 69 |
|
|
|
|
|
|
|
|
|
|
| 70 |
generated_ids = model.generate(
|
| 71 |
**inputs,
|
| 72 |
max_new_tokens=1024,
|
| 73 |
num_beams=3,
|
| 74 |
do_sample=False
|
| 75 |
)
|
|
|
|
| 76 |
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
|
| 77 |
|
|
|
|
|
|
|
|
|
|
| 78 |
parsed_answer = processor.post_process_generation(generated_text, task=prompt, image_size=(image.width, image.height))
|
| 79 |
|
|
|
|
|
|
|
|
|
|
| 80 |
return parsed_answer
|
| 81 |
|
| 82 |
def main_process(image, task):
|
| 83 |
result = process_image(image, task)
|
| 84 |
-
|
| 85 |
if task in IMAGE_TASKS:
|
| 86 |
if task == "OCR with Region":
|
| 87 |
-
output_image = draw_ocr_bboxes(image.copy(), result[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
else:
|
| 89 |
fig = plot_bbox(image, result[TASK_PROMPTS[task]])
|
| 90 |
output_image = fig_to_pil(fig)
|
| 91 |
-
|
| 92 |
else:
|
| 93 |
return None, gr.update(visible=False), str(result), gr.update(visible=True)
|
| 94 |
|
| 95 |
def reset_outputs():
|
| 96 |
return None, gr.update(visible=False), None, gr.update(visible=True)
|
| 97 |
|
| 98 |
-
with gr.Blocks(title="Florence-
|
| 99 |
-
gr.Markdown(
|
| 100 |
-
gr.Markdown(
|
| 101 |
|
| 102 |
with gr.Column():
|
| 103 |
image_input = gr.Image(type="pil", label="Input Image")
|
|
@@ -107,8 +202,8 @@ with gr.Blocks(title="Florence-2 Demo") as iface:
|
|
| 107 |
submit_button = gr.Button("Process")
|
| 108 |
reset_button = gr.Button("Reset")
|
| 109 |
|
| 110 |
-
output_image = gr.Image(label="
|
| 111 |
-
output_text = gr.Textbox(label="
|
| 112 |
|
| 113 |
def process_and_update(image, task):
|
| 114 |
if image is None:
|
|
|
|
| 8 |
import matplotlib.patches as patches
|
| 9 |
import numpy as np
|
| 10 |
import random
|
| 11 |
+
import json
|
| 12 |
+
# Load and parse the config.json file
|
| 13 |
+
with open("config.json", "r") as f:
|
| 14 |
+
config = json.load(f)
|
| 15 |
+
|
| 16 |
+
# Extract necessary variables from the config
|
| 17 |
+
d_model = config['text_config']['d_model']
|
| 18 |
+
num_layers = config['text_config']['encoder_layers']
|
| 19 |
+
attention_heads = config['text_config']['encoder_attention_heads']
|
| 20 |
+
vocab_size = config['text_config']['vocab_size']
|
| 21 |
+
max_length = config['text_config']['max_length']
|
| 22 |
+
beam_size = config['text_config']['num_beams']
|
| 23 |
+
dropout = config['text_config']['dropout']
|
| 24 |
+
activation_function = config['text_config']['activation_function']
|
| 25 |
+
no_repeat_ngram_size = config['text_config']['no_repeat_ngram_size']
|
| 26 |
+
patch_size = config['vision_config']['patch_size'][0]
|
| 27 |
+
temporal_embeddings = config['vision_config']['visual_temporal_embedding']['max_temporal_embeddings']
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
title = """# 🙋🏻♂️Welcome to Tonic's PLeIAs/📸📈✍🏻Florence-PDF"""
|
| 31 |
+
description = """
|
| 32 |
+
---
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
This application showcases the **PLeIAs/📸📈✍🏻Florence-PDF** model, a powerful AI system designed for both **text and image generation tasks**. The model is capable of handling complex tasks such as object detection, image captioning, OCR (Optical Character Recognition), and detailed region-based image analysis.
|
| 36 |
+
|
| 37 |
+
### **How to Use**:
|
| 38 |
+
1. **Upload an Image**: Select an image for processing.
|
| 39 |
+
2. **Choose a Task**: Pick a task from the dropdown menu, such as "Caption", "Object Detection", "OCR", etc.
|
| 40 |
+
3. **Process**: Click the "Process" button to let PLeIAs/📸📈✍🏻Florence-PDF analyze the image and generate the output.
|
| 41 |
+
4. **View Results**: Depending on the task, you’ll either see a processed image (e.g., with bounding boxes or labels) or a text-based result (e.g., a generated caption or extracted text).
|
| 42 |
+
|
| 43 |
+
You can reset the interface anytime by clicking the **Reset** button.
|
| 44 |
+
|
| 45 |
+
### **Available Tasks**:
|
| 46 |
+
- **✍🏻Caption**: Generate a concise description of the image.
|
| 47 |
+
- **📸Object Detection**: Identify and label objects within the image.
|
| 48 |
+
- **📸✍🏻OCR**: Extract text from the image.
|
| 49 |
+
- **📸Region Proposal**: Detect key regions in the image for detailed captioning.
|
| 50 |
+
|
| 51 |
+
---
|
| 52 |
+
|
| 53 |
+
### Join us :
|
| 54 |
+
🌟TeamTonic🌟 is always making cool demos! Join our active builder's 🛠️community 👻 [](https://discord.gg/qdfnvSPcqP) On 🤗Huggingface:[MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Tonic-AI](https://github.com/tonic-ai) & contribute to🌟 [Build Tonic](https://git.tonic-ai.com/contribute)🤗Big thanks to Yuvi Sharma and all the folks at huggingface for the community grant 🤗
|
| 55 |
+
"""
|
| 56 |
+
model_presentation = f"""
|
| 57 |
+
## PLeIAs/📸📈✍🏻Florence-PDF Model Overview
|
| 58 |
+
|
| 59 |
+
The **PLeIAs/📸📈✍🏻Florence-PDF** model is a state-of-the-art model for conditional generation tasks, designed to be highly effective for both **text** and **vision** tasks. It is built as an **encoder-decoder** architecture, which allows for enhanced flexibility and performance in generating outputs based on diverse inputs.
|
| 60 |
+
|
| 61 |
+
### Key Features
|
| 62 |
+
|
| 63 |
+
- **Model Architecture**: PLeIAs/📸📈✍🏻Florence-PDF uses an encoder-decoder structure, which makes it effective in tasks like **text generation**, **summarization**, and **translation**. It has **{num_layers} layers** for both the encoder and decoder, with a model dimension (`d_model`) of **{d_model}**.
|
| 64 |
+
- **Conditional Generation**: The model can generate text conditionally, with a maximum length of **{max_length} tokens** for each generated sequence, making it ideal for tasks that require concise output.
|
| 65 |
+
- **Beam Search**: PLeIAs/📸📈✍🏻Florence-PDFsupports **beam search** with up to **{beam_size} beams**, enabling more diverse and accurate text generation by exploring multiple potential outputs before selecting the best one.
|
| 66 |
+
- **Tokenization**: It includes a tokenizer with a vocabulary size of **{vocab_size} tokens**. Special tokens such as the **bos_token_id (0)** and **eos_token_id (2)** help control the generation process by marking the beginning and end of a sequence.
|
| 67 |
+
- **Attention Mechanism**: Both the encoder and decoder utilize **{attention_heads} attention heads** per layer, ensuring that the model can focus on relevant parts of the input when generating text.
|
| 68 |
+
- **Dropout and Activation**: PLeIAs/📸📈✍🏻Florence-PDF employs a **{activation_function} activation function** and a **dropout rate of {dropout}**, which enhances model performance by preventing overfitting and improving generalization.
|
| 69 |
+
- **Training Configuration**: The model uses **float32** precision for training, and it supports fine-tuning for specific tasks by setting `finetuning_task` appropriately.
|
| 70 |
+
|
| 71 |
+
### Vision Integration
|
| 72 |
+
|
| 73 |
+
In addition to text tasks, PLeIAs/📸📈✍🏻Florence-PDF also incorporates **vision capabilities**:
|
| 74 |
+
- **Patch-based Image Processing**: The vision component operates on image patches with a patch size of **{patch_size}x{patch_size}**.
|
| 75 |
+
- **Temporal Embedding**: Visual tasks benefit from temporal embeddings with up to **{temporal_embeddings} steps**, making Florence-2 well-suited for video analysis.
|
| 76 |
+
|
| 77 |
+
### Model Usage and Flexibility
|
| 78 |
+
|
| 79 |
+
- **No Repeat N-Grams**: To reduce repetition in text generation, the model is configured with a **no_repeat_ngram_size** of **{no_repeat_ngram_size}**, ensuring more diverse and meaningful outputs.
|
| 80 |
+
- **Sampling Strategies**: PLeIAs/📸📈✍🏻Florence-PDF offers flexible sampling strategies, including **top-k** and **top-p (nucleus) sampling**, allowing for both creative and constrained generation based on user needs.
|
| 81 |
+
|
| 82 |
+
📸📈✍🏻Florence-PDF is a robust model capable of handling various **text and image** tasks with high precision and flexibility, making it a valuable tool for both academic research and practical applications.
|
| 83 |
+
"""
|
| 84 |
|
| 85 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 86 |
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
|
|
|
| 89 |
processor = AutoProcessor.from_pretrained("PleIAs/Florence-PDF", trust_remote_code=True)
|
| 90 |
|
| 91 |
TASK_PROMPTS = {
|
| 92 |
+
"✍🏻Caption": "<CAPTION>",
|
| 93 |
+
"✍🏻✍🏻Caption": "<DETAILED_CAPTION>",
|
| 94 |
+
"✍🏻✍🏻✍🏻Caption": "<MORE_DETAILED_CAPTION>",
|
| 95 |
+
"📸Object Detection": "<OD>",
|
| 96 |
+
"📸Dense Region Caption": "<DENSE_REGION_CAPTION>",
|
| 97 |
+
"📸✍🏻OCR": "<OCR>",
|
| 98 |
+
"📸✍🏻OCR with Region": "<OCR_WITH_REGION>",
|
| 99 |
+
"📸Region Proposal": "<REGION_PROPOSAL>"
|
| 100 |
}
|
| 101 |
|
| 102 |
+
|
| 103 |
+
IMAGE_TASKS = ["📸Object Detection", "📸Dense Region Caption", "📸Region Proposal", "📸✍🏻OCR with Region"]
|
| 104 |
+
TEXT_TASKS = ["✍🏻Caption", "✍🏻✍🏻Caption", "✍🏻✍🏻✍🏻Caption", "📸✍🏻OCR", "📸✍🏻OCR with Region"]
|
| 105 |
|
| 106 |
colormap = ['blue','orange','green','purple','brown','pink','gray','olive','cyan','red',
|
| 107 |
'lime','indigo','violet','aqua','magenta','coral','gold','tan','skyblue']
|
|
|
|
| 139 |
|
| 140 |
def process_image(image, task):
|
| 141 |
prompt = TASK_PROMPTS[task]
|
| 142 |
+
|
| 143 |
+
# Print the inputs for debugging
|
| 144 |
+
print(f"\n--- Processing Task: {task} ---")
|
| 145 |
+
print(f"Prompt: {prompt}")
|
| 146 |
+
|
| 147 |
inputs = processor(text=prompt, images=image, return_tensors="pt").to(device, torch_dtype)
|
| 148 |
|
| 149 |
+
# Print the input tensors for debugging
|
| 150 |
+
print(f"Model Input: {inputs}")
|
| 151 |
+
|
| 152 |
generated_ids = model.generate(
|
| 153 |
**inputs,
|
| 154 |
max_new_tokens=1024,
|
| 155 |
num_beams=3,
|
| 156 |
do_sample=False
|
| 157 |
)
|
| 158 |
+
|
| 159 |
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
|
| 160 |
|
| 161 |
+
# Print the raw generated output for debugging
|
| 162 |
+
print(f"Raw Model Output: {generated_text}")
|
| 163 |
+
|
| 164 |
parsed_answer = processor.post_process_generation(generated_text, task=prompt, image_size=(image.width, image.height))
|
| 165 |
|
| 166 |
+
# Print the parsed answer for debugging
|
| 167 |
+
print(f"Parsed Answer: {parsed_answer}")
|
| 168 |
+
|
| 169 |
return parsed_answer
|
| 170 |
|
| 171 |
def main_process(image, task):
|
| 172 |
result = process_image(image, task)
|
| 173 |
+
|
| 174 |
if task in IMAGE_TASKS:
|
| 175 |
if task == "OCR with Region":
|
| 176 |
+
output_image = draw_ocr_bboxes(image.copy(), result['quad_boxes'])
|
| 177 |
+
text_output = result.get('recognized_text', 'No text found') # Extract recognized text
|
| 178 |
+
|
| 179 |
+
# Debugging: Print the recognized text
|
| 180 |
+
print(f"Recognized Text: {text_output}")
|
| 181 |
+
|
| 182 |
+
return output_image, gr.update(visible=True), text_output, gr.update(visible=True)
|
| 183 |
else:
|
| 184 |
fig = plot_bbox(image, result[TASK_PROMPTS[task]])
|
| 185 |
output_image = fig_to_pil(fig)
|
| 186 |
+
return output_image, gr.update(visible=True), None, gr.update(visible=False)
|
| 187 |
else:
|
| 188 |
return None, gr.update(visible=False), str(result), gr.update(visible=True)
|
| 189 |
|
| 190 |
def reset_outputs():
|
| 191 |
return None, gr.update(visible=False), None, gr.update(visible=True)
|
| 192 |
|
| 193 |
+
with gr.Blocks(title="PLeIAs/📸📈✍🏻Florence-PDF") as iface:
|
| 194 |
+
gr.Markdown(title)
|
| 195 |
+
gr.Markdown(description)
|
| 196 |
|
| 197 |
with gr.Column():
|
| 198 |
image_input = gr.Image(type="pil", label="Input Image")
|
|
|
|
| 202 |
submit_button = gr.Button("Process")
|
| 203 |
reset_button = gr.Button("Reset")
|
| 204 |
|
| 205 |
+
output_image = gr.Image(label="PLeIAs/📸📈✍🏻Florence-PDF", visible=False)
|
| 206 |
+
output_text = gr.Textbox(label="PLeIAs/📸📈✍🏻Florence-PDF", visible=True)
|
| 207 |
|
| 208 |
def process_and_update(image, task):
|
| 209 |
if image is None:
|
config.json
ADDED
|
@@ -0,0 +1,237 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "florence-large-ft",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"Florence2ForConditionalGeneration"
|
| 5 |
+
],
|
| 6 |
+
"auto_map": {
|
| 7 |
+
"AutoConfig": "configuration_florence2.Florence2Config",
|
| 8 |
+
"AutoModelForCausalLM": "modeling_florence2.Florence2ForConditionalGeneration"
|
| 9 |
+
},
|
| 10 |
+
"bos_token_id": 0,
|
| 11 |
+
"eos_token_id": 2,
|
| 12 |
+
"ignore_index": -100,
|
| 13 |
+
"is_encoder_decoder": true,
|
| 14 |
+
"model_type": "florence2",
|
| 15 |
+
"pad_token_id": 1,
|
| 16 |
+
"projection_dim": 1024,
|
| 17 |
+
"text_config": {
|
| 18 |
+
"_name_or_path": "",
|
| 19 |
+
"activation_dropout": 0.1,
|
| 20 |
+
"activation_function": "gelu",
|
| 21 |
+
"add_bias_logits": false,
|
| 22 |
+
"add_cross_attention": false,
|
| 23 |
+
"add_final_layer_norm": false,
|
| 24 |
+
"architectures": null,
|
| 25 |
+
"attention_dropout": 0.1,
|
| 26 |
+
"bad_words_ids": null,
|
| 27 |
+
"begin_suppress_tokens": null,
|
| 28 |
+
"bos_token_id": 0,
|
| 29 |
+
"chunk_size_feed_forward": 0,
|
| 30 |
+
"classif_dropout": 0.1,
|
| 31 |
+
"classifier_dropout": 0.0,
|
| 32 |
+
"cross_attention_hidden_size": null,
|
| 33 |
+
"d_model": 1024,
|
| 34 |
+
"decoder_attention_heads": 16,
|
| 35 |
+
"decoder_ffn_dim": 4096,
|
| 36 |
+
"decoder_layerdrop": 0.0,
|
| 37 |
+
"decoder_layers": 12,
|
| 38 |
+
"decoder_start_token_id": 2,
|
| 39 |
+
"diversity_penalty": 0.0,
|
| 40 |
+
"do_sample": false,
|
| 41 |
+
"dropout": 0.1,
|
| 42 |
+
"early_stopping": true,
|
| 43 |
+
"encoder_attention_heads": 16,
|
| 44 |
+
"encoder_ffn_dim": 4096,
|
| 45 |
+
"encoder_layerdrop": 0.0,
|
| 46 |
+
"encoder_layers": 12,
|
| 47 |
+
"encoder_no_repeat_ngram_size": 0,
|
| 48 |
+
"eos_token_id": 2,
|
| 49 |
+
"exponential_decay_length_penalty": null,
|
| 50 |
+
"finetuning_task": null,
|
| 51 |
+
"forced_bos_token_id": 0,
|
| 52 |
+
"forced_eos_token_id": 2,
|
| 53 |
+
"gradient_checkpointing": false,
|
| 54 |
+
"id2label": {
|
| 55 |
+
"0": "LABEL_0",
|
| 56 |
+
"1": "LABEL_1",
|
| 57 |
+
"2": "LABEL_2"
|
| 58 |
+
},
|
| 59 |
+
"init_std": 0.02,
|
| 60 |
+
"is_decoder": false,
|
| 61 |
+
"is_encoder_decoder": true,
|
| 62 |
+
"label2id": {
|
| 63 |
+
"LABEL_0": 0,
|
| 64 |
+
"LABEL_1": 1,
|
| 65 |
+
"LABEL_2": 2
|
| 66 |
+
},
|
| 67 |
+
"length_penalty": 1.0,
|
| 68 |
+
"max_length": 20,
|
| 69 |
+
"max_position_embeddings": 1024,
|
| 70 |
+
"min_length": 0,
|
| 71 |
+
"model_type": "florence2_language",
|
| 72 |
+
"no_repeat_ngram_size": 3,
|
| 73 |
+
"normalize_before": false,
|
| 74 |
+
"num_beam_groups": 1,
|
| 75 |
+
"num_beams": 3,
|
| 76 |
+
"num_hidden_layers": 12,
|
| 77 |
+
"num_return_sequences": 1,
|
| 78 |
+
"output_attentions": false,
|
| 79 |
+
"output_hidden_states": false,
|
| 80 |
+
"output_scores": false,
|
| 81 |
+
"pad_token_id": 1,
|
| 82 |
+
"prefix": null,
|
| 83 |
+
"problem_type": null,
|
| 84 |
+
"pruned_heads": {},
|
| 85 |
+
"remove_invalid_values": false,
|
| 86 |
+
"repetition_penalty": 1.0,
|
| 87 |
+
"return_dict": true,
|
| 88 |
+
"return_dict_in_generate": false,
|
| 89 |
+
"scale_embedding": false,
|
| 90 |
+
"sep_token_id": null,
|
| 91 |
+
"suppress_tokens": null,
|
| 92 |
+
"task_specific_params": null,
|
| 93 |
+
"temperature": 1.0,
|
| 94 |
+
"tf_legacy_loss": false,
|
| 95 |
+
"tie_encoder_decoder": false,
|
| 96 |
+
"tie_word_embeddings": true,
|
| 97 |
+
"tokenizer_class": null,
|
| 98 |
+
"top_k": 50,
|
| 99 |
+
"top_p": 1.0,
|
| 100 |
+
"torch_dtype": null,
|
| 101 |
+
"torchscript": false,
|
| 102 |
+
"typical_p": 1.0,
|
| 103 |
+
"use_bfloat16": false,
|
| 104 |
+
"use_cache": true,
|
| 105 |
+
"vocab_size": 51289
|
| 106 |
+
},
|
| 107 |
+
"torch_dtype": "float32",
|
| 108 |
+
"transformers_version": "4.42.4",
|
| 109 |
+
"vision_config": {
|
| 110 |
+
"_name_or_path": "",
|
| 111 |
+
"add_cross_attention": false,
|
| 112 |
+
"architectures": null,
|
| 113 |
+
"bad_words_ids": null,
|
| 114 |
+
"begin_suppress_tokens": null,
|
| 115 |
+
"bos_token_id": null,
|
| 116 |
+
"chunk_size_feed_forward": 0,
|
| 117 |
+
"cross_attention_hidden_size": null,
|
| 118 |
+
"decoder_start_token_id": null,
|
| 119 |
+
"depths": [
|
| 120 |
+
1,
|
| 121 |
+
1,
|
| 122 |
+
9,
|
| 123 |
+
1
|
| 124 |
+
],
|
| 125 |
+
"dim_embed": [
|
| 126 |
+
256,
|
| 127 |
+
512,
|
| 128 |
+
1024,
|
| 129 |
+
2048
|
| 130 |
+
],
|
| 131 |
+
"diversity_penalty": 0.0,
|
| 132 |
+
"do_sample": false,
|
| 133 |
+
"drop_path_rate": 0.1,
|
| 134 |
+
"early_stopping": false,
|
| 135 |
+
"enable_checkpoint": false,
|
| 136 |
+
"encoder_no_repeat_ngram_size": 0,
|
| 137 |
+
"eos_token_id": null,
|
| 138 |
+
"exponential_decay_length_penalty": null,
|
| 139 |
+
"finetuning_task": null,
|
| 140 |
+
"forced_bos_token_id": null,
|
| 141 |
+
"forced_eos_token_id": null,
|
| 142 |
+
"id2label": {
|
| 143 |
+
"0": "LABEL_0",
|
| 144 |
+
"1": "LABEL_1"
|
| 145 |
+
},
|
| 146 |
+
"image_feature_source": [
|
| 147 |
+
"spatial_avg_pool",
|
| 148 |
+
"temporal_avg_pool"
|
| 149 |
+
],
|
| 150 |
+
"image_pos_embed": {
|
| 151 |
+
"max_pos_embeddings": 50,
|
| 152 |
+
"type": "learned_abs_2d"
|
| 153 |
+
},
|
| 154 |
+
"is_decoder": false,
|
| 155 |
+
"is_encoder_decoder": false,
|
| 156 |
+
"label2id": {
|
| 157 |
+
"LABEL_0": 0,
|
| 158 |
+
"LABEL_1": 1
|
| 159 |
+
},
|
| 160 |
+
"length_penalty": 1.0,
|
| 161 |
+
"max_length": 20,
|
| 162 |
+
"min_length": 0,
|
| 163 |
+
"model_type": "davit",
|
| 164 |
+
"no_repeat_ngram_size": 0,
|
| 165 |
+
"num_beam_groups": 1,
|
| 166 |
+
"num_beams": 1,
|
| 167 |
+
"num_groups": [
|
| 168 |
+
8,
|
| 169 |
+
16,
|
| 170 |
+
32,
|
| 171 |
+
64
|
| 172 |
+
],
|
| 173 |
+
"num_heads": [
|
| 174 |
+
8,
|
| 175 |
+
16,
|
| 176 |
+
32,
|
| 177 |
+
64
|
| 178 |
+
],
|
| 179 |
+
"num_return_sequences": 1,
|
| 180 |
+
"output_attentions": false,
|
| 181 |
+
"output_hidden_states": false,
|
| 182 |
+
"output_scores": false,
|
| 183 |
+
"pad_token_id": null,
|
| 184 |
+
"patch_padding": [
|
| 185 |
+
3,
|
| 186 |
+
1,
|
| 187 |
+
1,
|
| 188 |
+
1
|
| 189 |
+
],
|
| 190 |
+
"patch_prenorm": [
|
| 191 |
+
false,
|
| 192 |
+
true,
|
| 193 |
+
true,
|
| 194 |
+
true
|
| 195 |
+
],
|
| 196 |
+
"patch_size": [
|
| 197 |
+
7,
|
| 198 |
+
3,
|
| 199 |
+
3,
|
| 200 |
+
3
|
| 201 |
+
],
|
| 202 |
+
"patch_stride": [
|
| 203 |
+
4,
|
| 204 |
+
2,
|
| 205 |
+
2,
|
| 206 |
+
2
|
| 207 |
+
],
|
| 208 |
+
"prefix": null,
|
| 209 |
+
"problem_type": null,
|
| 210 |
+
"projection_dim": 1024,
|
| 211 |
+
"pruned_heads": {},
|
| 212 |
+
"remove_invalid_values": false,
|
| 213 |
+
"repetition_penalty": 1.0,
|
| 214 |
+
"return_dict": true,
|
| 215 |
+
"return_dict_in_generate": false,
|
| 216 |
+
"sep_token_id": null,
|
| 217 |
+
"suppress_tokens": null,
|
| 218 |
+
"task_specific_params": null,
|
| 219 |
+
"temperature": 1.0,
|
| 220 |
+
"tf_legacy_loss": false,
|
| 221 |
+
"tie_encoder_decoder": false,
|
| 222 |
+
"tie_word_embeddings": true,
|
| 223 |
+
"tokenizer_class": null,
|
| 224 |
+
"top_k": 50,
|
| 225 |
+
"top_p": 1.0,
|
| 226 |
+
"torch_dtype": null,
|
| 227 |
+
"torchscript": false,
|
| 228 |
+
"typical_p": 1.0,
|
| 229 |
+
"use_bfloat16": false,
|
| 230 |
+
"visual_temporal_embedding": {
|
| 231 |
+
"max_temporal_embeddings": 100,
|
| 232 |
+
"type": "COSINE"
|
| 233 |
+
},
|
| 234 |
+
"window_size": 12
|
| 235 |
+
},
|
| 236 |
+
"vocab_size": 51289
|
| 237 |
+
}
|