Upload core.py
Browse files
core.py
ADDED
|
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import transformers
|
| 2 |
+
from transformers import pipeline
|
| 3 |
+
|
| 4 |
+
import whisper
|
| 5 |
+
|
| 6 |
+
import datetime
|
| 7 |
+
|
| 8 |
+
transformers.utils.move_cache()
|
| 9 |
+
|
| 10 |
+
# ====================================
|
| 11 |
+
# Load speech recognition model
|
| 12 |
+
# speech_recognition_pipeline = pipeline("automatic-speech-recognition", model="facebook/wav2vec2-base-960h")
|
| 13 |
+
speech_recognition_model = whisper.load_model("base")
|
| 14 |
+
|
| 15 |
+
# ====================================
|
| 16 |
+
# Load text summarization model English
|
| 17 |
+
# text_summarization_pipeline_En = pipeline("summarization", model="facebook/bart-large-cnn")
|
| 18 |
+
tokenizer_En = transformers.AutoTokenizer.from_pretrained("facebook/bart-large-cnn")
|
| 19 |
+
text_summarization_model_En = transformers.AutoModelForSeq2SeqLM.from_pretrained("facebook/bart-large-cnn")
|
| 20 |
+
|
| 21 |
+
# ====================================
|
| 22 |
+
# Load text summarization model Vietnamese
|
| 23 |
+
tokenizer_Vi = transformers.AutoTokenizer.from_pretrained("VietAI/vit5-large-vietnews-summarization")
|
| 24 |
+
text_summarization_model_Vi = transformers.AutoModelForSeq2SeqLM.from_pretrained("VietAI/vit5-large-vietnews-summarization")
|
| 25 |
+
|
| 26 |
+
def asr_transcript(input_file):
|
| 27 |
+
audio = whisper.load_audio(input_file)
|
| 28 |
+
output = speech_recognition_model.transcribe(audio)
|
| 29 |
+
text = output['text']
|
| 30 |
+
lang = "English"
|
| 31 |
+
if output["language"] == 'en':
|
| 32 |
+
lang = "English"
|
| 33 |
+
elif output["language"] == 'vi':
|
| 34 |
+
lang = "Vietnamese"
|
| 35 |
+
|
| 36 |
+
detail = ""
|
| 37 |
+
for segment in output['segments']:
|
| 38 |
+
start = str(datetime.timedelta(seconds=round(segment['start'])))
|
| 39 |
+
end = str(datetime.timedelta(seconds=round(segment['end'])))
|
| 40 |
+
small_text = segment['text']
|
| 41 |
+
detail = detail + start + "-" + end + " " + small_text + "\n"
|
| 42 |
+
return text, lang, detail
|
| 43 |
+
|
| 44 |
+
def text_summarize_en(text_input):
|
| 45 |
+
encoding = tokenizer_En(text_input, truncation=True, return_tensors="pt")
|
| 46 |
+
input_ids, attention_masks = encoding["input_ids"], encoding["attention_mask"]
|
| 47 |
+
outputs = text_summarization_model_En.generate(
|
| 48 |
+
input_ids=input_ids, attention_mask=attention_masks,
|
| 49 |
+
max_length=256,
|
| 50 |
+
early_stopping=True
|
| 51 |
+
)
|
| 52 |
+
text = ""
|
| 53 |
+
for output in outputs:
|
| 54 |
+
line = tokenizer_En.decode(output, skip_special_tokens=True, clean_up_tokenization_spaces=True)
|
| 55 |
+
text = text + line
|
| 56 |
+
return text
|
| 57 |
+
|
| 58 |
+
def text_summarize_vi(text_input):
|
| 59 |
+
encoding = tokenizer_Vi(text_input, truncation=True, return_tensors="pt")
|
| 60 |
+
input_ids, attention_masks = encoding["input_ids"], encoding["attention_mask"]
|
| 61 |
+
outputs = text_summarization_model_Vi.generate(
|
| 62 |
+
input_ids=input_ids, attention_mask=attention_masks,
|
| 63 |
+
max_length=256,
|
| 64 |
+
early_stopping=True
|
| 65 |
+
)
|
| 66 |
+
text = ""
|
| 67 |
+
for output in outputs:
|
| 68 |
+
line = tokenizer_Vi.decode(output, skip_special_tokens=True, clean_up_tokenization_spaces=True)
|
| 69 |
+
text = text + line
|
| 70 |
+
return text
|
| 71 |
+
|
| 72 |
+
def text_summarize(text_input, lang):
|
| 73 |
+
if lang == 'English':
|
| 74 |
+
return text_summarize_en(text_input)
|
| 75 |
+
elif lang == 'Vietnamese':
|
| 76 |
+
return text_summarize_vi(text_input)
|
| 77 |
+
else:
|
| 78 |
+
return ""
|