Dataset
Browse files- Dataset.py +61 -0
Dataset.py
ADDED
|
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
from torch.utils.data import DataLoader, Dataset
|
| 4 |
+
import tensorflow as tf
|
| 5 |
+
import numpy as np
|
| 6 |
+
|
| 7 |
+
def pad_sequences(sequences, max_seq_len=0):
|
| 8 |
+
"""Pad sequences to max length in sequence."""
|
| 9 |
+
max_seq_len = max(max_seq_len, max(len(sequence) for sequence in sequences))
|
| 10 |
+
padded_sequences = np.zeros((len(sequences), max_seq_len))
|
| 11 |
+
for i, sequence in enumerate(sequences):
|
| 12 |
+
padded_sequences[i][:len(sequence)] = sequence
|
| 13 |
+
return padded_sequences
|
| 14 |
+
|
| 15 |
+
class SkimlitDataset(Dataset):
|
| 16 |
+
def __init__(self, text_seq, line_num, total_line):
|
| 17 |
+
self.text_seq = text_seq
|
| 18 |
+
self.line_num_one_hot = line_num
|
| 19 |
+
self.total_line_one_hot = total_line
|
| 20 |
+
|
| 21 |
+
def __len__(self):
|
| 22 |
+
return len(self.text_seq)
|
| 23 |
+
|
| 24 |
+
def __str__(self):
|
| 25 |
+
return f"<Dataset(N={len(self)})>"
|
| 26 |
+
|
| 27 |
+
def __getitem__(self, index):
|
| 28 |
+
X = self.text_seq[index]
|
| 29 |
+
line_num = self.line_num_one_hot[index]
|
| 30 |
+
total_line = self.total_line_one_hot[index]
|
| 31 |
+
return [X, len(X), line_num, total_line]
|
| 32 |
+
|
| 33 |
+
def collate_fn(self, batch):
|
| 34 |
+
"""Processing on a batch"""
|
| 35 |
+
# Getting Input
|
| 36 |
+
batch = np.array(batch)
|
| 37 |
+
text_seq = batch[:,0]
|
| 38 |
+
seq_lens = batch[:, 1]
|
| 39 |
+
line_nums = batch[:, 2]
|
| 40 |
+
total_lines = batch[:, 3]
|
| 41 |
+
|
| 42 |
+
# padding inputs
|
| 43 |
+
pad_text_seq = pad_sequences(sequences=text_seq) # max_seq_len=max_length
|
| 44 |
+
|
| 45 |
+
# converting line nums into one-hot encoding
|
| 46 |
+
line_nums = tf.one_hot(line_nums, depth=20)
|
| 47 |
+
|
| 48 |
+
# converting total lines into one-hot encoding
|
| 49 |
+
total_lines = tf.one_hot(total_lines, depth=24)
|
| 50 |
+
|
| 51 |
+
# converting inputs to tensors
|
| 52 |
+
pad_text_seq = torch.LongTensor(pad_text_seq.astype(np.int32))
|
| 53 |
+
seq_lens = torch.LongTensor(seq_lens.astype(np.int32))
|
| 54 |
+
line_nums = torch.tensor(line_nums.numpy())
|
| 55 |
+
total_lines = torch.tensor(total_lines.numpy())
|
| 56 |
+
|
| 57 |
+
return pad_text_seq, seq_lens, line_nums, total_lines
|
| 58 |
+
|
| 59 |
+
def create_dataloader(self, batch_size, shuffle=False, drop_last=False):
|
| 60 |
+
dataloader = DataLoader(dataset=self, batch_size=batch_size, collate_fn=self.collate_fn, shuffle=shuffle, drop_last=drop_last, pin_memory=True)
|
| 61 |
+
return dataloader
|