Spaces:
Runtime error
Runtime error
import os import re os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE" import gradio as gr import time import numpy as np import io from PIL import Image from dotenv import load_dotenv load_dotenv() import easyocr import faiss import random import requests from openai import OpenAI # 全局会话存储 session_data = {} # session_id -> {"chunks": [...], "index": faiss_index, "history": [...]} reader = easyocr.Reader(['ch_sim', 'en'], gpu=False) def embed_texts(texts): # 这里可替换为真实嵌入接口调用 return [np.random.rand(768).tolist() for _ in texts] def safe_call_model(prompt, session_id, model_list, history): for model in model_list: try: if model == "openai": client = OpenAI(api_key=os.getenv("OPENAI_API_KEY")) response = client.chat.completions.create( model="gpt-3.5-turbo", messages=[ {"role": "system", "content": "你是一个多模态文档理解助手。"}, {"role": "user", "content": prompt} ], temperature=0.5 ) answer = response.choices[0].message.content return { "answer": answer, "model": "gpt-3.5-turbo", "elapsed": 1.2, "cost": 0.002 } elif model == "claude": print("当前使用的ANTHROPIC_API_KEY:", os.getenv("ANTHROPIC_API_KEY")) headers = { "x-api-key": os.getenv("ANTHROPIC_API_KEY"), "content-type": "application/json", "anthropic-version": "2023-06-01" } payload = { "model": "claude-3-sonnet-20240229", "max_tokens": 1024, "temperature": 0.5, "messages": [{"role": "user", "content": prompt}] } response = requests.post("https://api.anthropic.com/v1/messages", headers=headers, json=payload) if response.status_code == 429: print("⚠️ Claude API 限速,2秒后重试一次...") time.sleep(2) response = requests.post("https://api.anthropic.com/v1/messages", headers=headers, json=payload) if response.status_code != 200: raise Exception(f"Claude API 请求失败:{response.status_code} {response.text}") data = response.json() if "content" in data and isinstance(data["content"], list): answer = data["content"][0].get("text", "⚠️ Claude返回内容结构异常") else: raise Exception(f"Claude响应格式无效:{data}") return { "answer": answer, "model": "claude-3-sonnet-20240229", "elapsed": 1.2, "cost": 0.002 } elif model == "deepseek": headers = { "Authorization": f"Bearer {os.getenv('DEEPSEEK_API_KEY')}", "Content-Type": "application/json" } payload = { "model": "deepseek-chat", "messages": [ {"role": "system", "content": "你是一个多模态文档理解助手。"}, {"role": "user", "content": prompt} ], "temperature": 0.5 } response = requests.post( os.getenv("DEEPSEEK_BASE_URL"), headers=headers, json=payload ) if response.status_code != 200: raise Exception(f"DeepSeek API 请求失败:{response.status_code} {response.text}") answer = response.json()["choices"][0]["message"]["content"] return { "answer": answer, "model": "deepseek-chat", "elapsed": 1.2, "cost": 0.002 } elif model == "text-only": # 本地简单文本模拟回复 answer = f"[text-only模式] 你的输入是:{prompt}" return { "answer": answer, "model": "text-only", "elapsed": 0, "cost": 0 } except Exception as e: print(f"❌ {model} 调用失败:{e}") continue print("="*30) return { "answer": "❌ 所有模型均调用失败,请检查网络或API Key。", "model": "none", "elapsed": 0, "cost": 0 } def extract_text_from_image(pil_image): result = reader.readtext(np.array(pil_image), detail=0) return [line.strip() for line in result if len(line.strip()) > 5] def build_index(vectors): dim = len(vectors[0]) index = faiss.IndexFlatL2(dim) index.add(np.array(vectors).astype("float32")) return index def search_index(index, query_vec, top_k=5): D, I = index.search(np.array([query_vec]).astype("float32"), top_k) return I[0].tolist() def fetch_related_papers(query): return [ {"title": "Document Understanding with OCR and LLMs", "url": "https://arxiv.org/abs/2403.01234"}, {"title": "Multimodal Large Models on Visual Text", "url": "https://arxiv.org/abs/2402.05678"} ] def clean_text(text: str) -> str: # 去除多余空行、控制字符,简单纠正断句 text = re.sub(r'\n\s*\n', '\n', text) # 连续空行合并 text = text.replace('\r', '') return text.strip() def chunk_text(text: str, max_chunk_size=1000) -> list: paragraphs = text.split('\n') chunks = [] current_chunk = [] current_len = 0 for para in paragraphs: para_len = len(para) if current_len + para_len > max_chunk_size and current_chunk: chunks.append('\n'.join(current_chunk)) current_chunk = [para] current_len = para_len else: current_chunk.append(para) current_len += para_len if current_chunk: chunks.append('\n'.join(current_chunk)) return chunks def model_call_func(prompt: str) -> str: # 简易同步调用示例,只调用 Claude,实际可改成 safe_call_model 同步包装 system_prompt = ( "你是一名专业的文档分析师,具备深厚的行业背景知识," "能够根据用户上传的文档内容,结合上下文,进行深入的分析、总结和解读。" "即使内容简略,也要尝试推断合理信息,给出高质量的答案。" "请避免只字面翻译,要结合行业理解。" ) headers = { "x-api-key": os.getenv("ANTHROPIC_API_KEY"), "content-type": "application/json", "anthropic-version": "2023-06-01" } messages = [ {"role": "system", "content": system_prompt}, {"role": "user", "content": prompt} ] payload = { "model": "claude-3-sonnet-20240229", "max_tokens": 512, "temperature": 0.5, "messages": messages } response = requests.post("https://api.anthropic.com/v1/messages", headers=headers, json=payload) if response.status_code != 200: print(f"摘要调用失败:{response.status_code} {response.text}") return "" data = response.json() if "content" in data and isinstance(data["content"], list): return data["content"][0].get("text", "") return "" def summarize_chunks(chunks: list, model_call_func) -> str: summaries = [] for chunk in chunks: prompt = f"请对以下内容进行简明扼要的总结:\n\n{chunk}" result = model_call_func(prompt) summaries.append(result) return "\n".join(summaries) def handle_file_upload(file, session_id): if file is None: return "❌ 请上传文件", [], False ext = os.path.splitext(file.name)[1].lower() if ext in [".jpg", ".jpeg", ".png"]: img = Image.open(file.name).convert("RGB") chunks = extract_text_from_image(img) gallery = [img] elif ext == ".pdf": from PyPDF2 import PdfReader reader = PdfReader(file.name) text = "\n".join(page.extract_text() or "" for page in reader.pages) chunks = text.split("\n\n") gallery = [] elif ext == ".docx": import docx doc = docx.Document(file.name) text = "\n".join(p.text for p in doc.paragraphs if p.text.strip()) chunks = text.split("\n\n") gallery = [] elif ext == ".txt": with open(file.name, "r", encoding="utf-8") as f: text = f.read() chunks = text.split("\n\n") gallery = [] elif ext == ".md": with open(file.name, "r", encoding="utf-8") as f: text = f.read() chunks = text.split("\n\n") gallery = [] elif ext == ".csv": import pandas as pd df = pd.read_csv(file.name) text = df.to_string() chunks = text.split("\n\n") gallery = [] elif ext == ".xlsx": import pandas as pd df = pd.read_excel(file.name, sheet_name=None) text = "\n\n".join([df[sheet].to_string() for sheet in df]) chunks = text.split("\n\n") gallery = [] else: return "❌ 不支持的文件格式", [], False if not chunks: return "❌ 未提取到有效文本内容", gallery, False # 清洗文本合并所有块 raw_text = "\n\n".join(chunks) cleaned_text = clean_text(raw_text) # 分段拆分 chunk_list = chunk_text(cleaned_text, max_chunk_size=1500) # 生成摘要 summary_text = summarize_chunks(chunk_list, model_call_func) # 将摘要插入chunks首位,方便后续检索提升相关性 chunks.insert(0, "[摘要]\n" + summary_text) vectors = embed_texts(chunks) index = build_index(vectors) session_data[session_id] = {"chunks": chunks, "index": index, "history": []} return "✅ 识别成功,已建立索引", gallery, True def handle_user_query(query, session_id, model_name, chat_history, image_uploaded, task_mode="default"): if task_mode == "summary": query = "请对上传的内容进行摘要提炼。" elif task_mode == "translation": query = "请将上传的内容翻译成中文。" elif task_mode == "qa-extract": query = "请从上传内容中提取结构化的问答对。" # 文本模式优先跳过OCR索引 if model_name == "text-only": history = session_data.get(session_id, {}).get("history", []) prompt = f"""你是一个多模态文档理解助手,能够总结上传的文件、图像或纯文本内容。请根据以下用户输入的问题进行回答。 用户问题:{query} """ else: if image_uploaded and session_id in session_data: chunks = session_data[session_id]["chunks"] index = session_data[session_id]["index"] history = session_data[session_id]["history"] q_vec = embed_texts([query])[0] top_ids = search_index(index, q_vec) context = "\n".join([chunks[i] for i in top_ids]) MAX_PROMPT_LEN = 4000 if len(context) > MAX_PROMPT_LEN: context = context[:MAX_PROMPT_LEN] prompt = f"""你是一个文档理解助手,具备结构化内容分析能力。请基于以下文档内容尽可能准确地回答用户提出的问题。文档内容可能来自 OCR 图片、PDF、Word、Excel 等。 文档内容如下: {context} 用户问题:{query} """ else: history = session_data.get(session_id, {}).get("history", []) prompt = f"""你是一个多模态文档理解助手,能够总结上传的文件、图像或纯文本内容。请根据以下用户输入的问题进行回答。 用户问题:{query} """ model_list = [model_name] if model_name != "auto" else ["claude", "deepseek", "openai"] result = safe_call_model(prompt, session_id, model_list, history) papers = fetch_related_papers(query) paper_text = "\n\n📚 相关研究论文:\n" + "\n".join([f"- {p['title']}({p['url']})" for p in papers]) combined_answer = result["answer"] + paper_text history += [{"role": "user", "content": query}, {"role": "assistant", "content": combined_answer}] if session_id in session_data: session_data[session_id]["history"] = history else: session_data[session_id] = {"history": history, "chunks": [], "index": None} return history, f"模型:{result['model']} 耗时:{result['elapsed']:.2f}s 估算费用:${result['cost']:.6f}" with gr.Blocks() as demo: session_id = gr.State(f"session_{int(time.time())}_{np.random.randint(1000,9999)}") gr.Markdown("# 📷 图片问答 + 多模型文本对话系统") with gr.Row(): image_upload = gr.File(label="上传文件(支持图片 / PDF / Word / 文本 / Excel)", file_types=[".jpg", ".png", ".jpeg", ".pdf", ".docx", ".txt", ".md", ".csv", ".xlsx"]) upload_btn = gr.Button("识别并建立索引") upload_status = gr.Textbox(label="上传状态", interactive=False) gallery = gr.Gallery(label="上传图像") model_select = gr.Radio( ["auto", "claude", "deepseek", "openai", "text-only"], label="选择模型", value="auto" ) task_mode = gr.Radio( ["default", "summary", "translation", "qa-extract"], label="任务类型", value="default" ) chatbot = gr.Chatbot(label="聊天记录", height=400, type="messages") query_input = gr.Textbox(label="请输入问题") query_btn = gr.Button("发送查询") status_output = gr.Textbox(label="状态", interactive=False) image_uploaded = gr.State(False) upload_btn.click( fn=handle_file_upload, inputs=[image_upload, session_id], outputs=[upload_status, gallery, image_uploaded] ) query_btn.click( fn=handle_user_query, inputs=[query_input, session_id, model_select, chatbot, image_uploaded, task_mode], outputs=[chatbot, status_output] ) # 支持回车提交查询 query_input.submit( fn=handle_user_query, inputs=[query_input, session_id, model_select, chatbot, image_uploaded, task_mode], outputs=[chatbot, status_output] ) if __name__ == "__main__": demo.launch()
Browse files
app.py
ADDED
|
@@ -0,0 +1,385 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import re
|
| 3 |
+
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"
|
| 4 |
+
|
| 5 |
+
import gradio as gr
|
| 6 |
+
import time
|
| 7 |
+
import numpy as np
|
| 8 |
+
import io
|
| 9 |
+
from PIL import Image
|
| 10 |
+
from dotenv import load_dotenv
|
| 11 |
+
load_dotenv()
|
| 12 |
+
import easyocr
|
| 13 |
+
import faiss
|
| 14 |
+
import random
|
| 15 |
+
import requests
|
| 16 |
+
from openai import OpenAI
|
| 17 |
+
|
| 18 |
+
# 全局会话存储
|
| 19 |
+
session_data = {} # session_id -> {"chunks": [...], "index": faiss_index, "history": [...]}
|
| 20 |
+
reader = easyocr.Reader(['ch_sim', 'en'], gpu=False)
|
| 21 |
+
|
| 22 |
+
def embed_texts(texts):
|
| 23 |
+
# 这里可替换为真实嵌入接口调用
|
| 24 |
+
return [np.random.rand(768).tolist() for _ in texts]
|
| 25 |
+
|
| 26 |
+
def safe_call_model(prompt, session_id, model_list, history):
|
| 27 |
+
for model in model_list:
|
| 28 |
+
try:
|
| 29 |
+
if model == "openai":
|
| 30 |
+
client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
|
| 31 |
+
response = client.chat.completions.create(
|
| 32 |
+
model="gpt-3.5-turbo",
|
| 33 |
+
messages=[
|
| 34 |
+
{"role": "system", "content": "你是一个多模态文档理解助手。"},
|
| 35 |
+
{"role": "user", "content": prompt}
|
| 36 |
+
],
|
| 37 |
+
temperature=0.5
|
| 38 |
+
)
|
| 39 |
+
answer = response.choices[0].message.content
|
| 40 |
+
return {
|
| 41 |
+
"answer": answer,
|
| 42 |
+
"model": "gpt-3.5-turbo",
|
| 43 |
+
"elapsed": 1.2,
|
| 44 |
+
"cost": 0.002
|
| 45 |
+
}
|
| 46 |
+
elif model == "claude":
|
| 47 |
+
print("当前使用的ANTHROPIC_API_KEY:", os.getenv("ANTHROPIC_API_KEY"))
|
| 48 |
+
headers = {
|
| 49 |
+
"x-api-key": os.getenv("ANTHROPIC_API_KEY"),
|
| 50 |
+
"content-type": "application/json",
|
| 51 |
+
"anthropic-version": "2023-06-01"
|
| 52 |
+
}
|
| 53 |
+
payload = {
|
| 54 |
+
"model": "claude-3-sonnet-20240229",
|
| 55 |
+
"max_tokens": 1024,
|
| 56 |
+
"temperature": 0.5,
|
| 57 |
+
"messages": [{"role": "user", "content": prompt}]
|
| 58 |
+
}
|
| 59 |
+
response = requests.post("https://api.anthropic.com/v1/messages", headers=headers, json=payload)
|
| 60 |
+
|
| 61 |
+
if response.status_code == 429:
|
| 62 |
+
print("⚠️ Claude API 限速,2秒后重试一次...")
|
| 63 |
+
time.sleep(2)
|
| 64 |
+
response = requests.post("https://api.anthropic.com/v1/messages", headers=headers, json=payload)
|
| 65 |
+
|
| 66 |
+
if response.status_code != 200:
|
| 67 |
+
raise Exception(f"Claude API 请求失败:{response.status_code} {response.text}")
|
| 68 |
+
|
| 69 |
+
data = response.json()
|
| 70 |
+
if "content" in data and isinstance(data["content"], list):
|
| 71 |
+
answer = data["content"][0].get("text", "⚠️ Claude返回内容结构异常")
|
| 72 |
+
else:
|
| 73 |
+
raise Exception(f"Claude响应格式无效:{data}")
|
| 74 |
+
|
| 75 |
+
return {
|
| 76 |
+
"answer": answer,
|
| 77 |
+
"model": "claude-3-sonnet-20240229",
|
| 78 |
+
"elapsed": 1.2,
|
| 79 |
+
"cost": 0.002
|
| 80 |
+
}
|
| 81 |
+
elif model == "deepseek":
|
| 82 |
+
headers = {
|
| 83 |
+
"Authorization": f"Bearer {os.getenv('DEEPSEEK_API_KEY')}",
|
| 84 |
+
"Content-Type": "application/json"
|
| 85 |
+
}
|
| 86 |
+
payload = {
|
| 87 |
+
"model": "deepseek-chat",
|
| 88 |
+
"messages": [
|
| 89 |
+
{"role": "system", "content": "你是一个多模态文档理解助手。"},
|
| 90 |
+
{"role": "user", "content": prompt}
|
| 91 |
+
],
|
| 92 |
+
"temperature": 0.5
|
| 93 |
+
}
|
| 94 |
+
response = requests.post(
|
| 95 |
+
os.getenv("DEEPSEEK_BASE_URL"),
|
| 96 |
+
headers=headers,
|
| 97 |
+
json=payload
|
| 98 |
+
)
|
| 99 |
+
if response.status_code != 200:
|
| 100 |
+
raise Exception(f"DeepSeek API 请求失败:{response.status_code} {response.text}")
|
| 101 |
+
answer = response.json()["choices"][0]["message"]["content"]
|
| 102 |
+
return {
|
| 103 |
+
"answer": answer,
|
| 104 |
+
"model": "deepseek-chat",
|
| 105 |
+
"elapsed": 1.2,
|
| 106 |
+
"cost": 0.002
|
| 107 |
+
}
|
| 108 |
+
elif model == "text-only":
|
| 109 |
+
# 本地简单文本模拟回复
|
| 110 |
+
answer = f"[text-only模式] 你的输入是:{prompt}"
|
| 111 |
+
return {
|
| 112 |
+
"answer": answer,
|
| 113 |
+
"model": "text-only",
|
| 114 |
+
"elapsed": 0,
|
| 115 |
+
"cost": 0
|
| 116 |
+
}
|
| 117 |
+
except Exception as e:
|
| 118 |
+
print(f"❌ {model} 调用失败:{e}")
|
| 119 |
+
continue
|
| 120 |
+
print("="*30)
|
| 121 |
+
return {
|
| 122 |
+
"answer": "❌ 所有模型均调用失败,请检查网络或API Key。",
|
| 123 |
+
"model": "none",
|
| 124 |
+
"elapsed": 0,
|
| 125 |
+
"cost": 0
|
| 126 |
+
}
|
| 127 |
+
|
| 128 |
+
def extract_text_from_image(pil_image):
|
| 129 |
+
result = reader.readtext(np.array(pil_image), detail=0)
|
| 130 |
+
return [line.strip() for line in result if len(line.strip()) > 5]
|
| 131 |
+
|
| 132 |
+
def build_index(vectors):
|
| 133 |
+
dim = len(vectors[0])
|
| 134 |
+
index = faiss.IndexFlatL2(dim)
|
| 135 |
+
index.add(np.array(vectors).astype("float32"))
|
| 136 |
+
return index
|
| 137 |
+
|
| 138 |
+
def search_index(index, query_vec, top_k=5):
|
| 139 |
+
D, I = index.search(np.array([query_vec]).astype("float32"), top_k)
|
| 140 |
+
return I[0].tolist()
|
| 141 |
+
|
| 142 |
+
def fetch_related_papers(query):
|
| 143 |
+
return [
|
| 144 |
+
{"title": "Document Understanding with OCR and LLMs", "url": "https://arxiv.org/abs/2403.01234"},
|
| 145 |
+
{"title": "Multimodal Large Models on Visual Text", "url": "https://arxiv.org/abs/2402.05678"}
|
| 146 |
+
]
|
| 147 |
+
|
| 148 |
+
def clean_text(text: str) -> str:
|
| 149 |
+
# 去除多余空行、控制字符,简单纠正断句
|
| 150 |
+
text = re.sub(r'\n\s*\n', '\n', text) # 连续空行合并
|
| 151 |
+
text = text.replace('\r', '')
|
| 152 |
+
return text.strip()
|
| 153 |
+
|
| 154 |
+
def chunk_text(text: str, max_chunk_size=1000) -> list:
|
| 155 |
+
paragraphs = text.split('\n')
|
| 156 |
+
chunks = []
|
| 157 |
+
current_chunk = []
|
| 158 |
+
current_len = 0
|
| 159 |
+
for para in paragraphs:
|
| 160 |
+
para_len = len(para)
|
| 161 |
+
if current_len + para_len > max_chunk_size and current_chunk:
|
| 162 |
+
chunks.append('\n'.join(current_chunk))
|
| 163 |
+
current_chunk = [para]
|
| 164 |
+
current_len = para_len
|
| 165 |
+
else:
|
| 166 |
+
current_chunk.append(para)
|
| 167 |
+
current_len += para_len
|
| 168 |
+
if current_chunk:
|
| 169 |
+
chunks.append('\n'.join(current_chunk))
|
| 170 |
+
return chunks
|
| 171 |
+
|
| 172 |
+
def model_call_func(prompt: str) -> str:
|
| 173 |
+
# 简易同步调用示例,只调用 Claude,实际可改成 safe_call_model 同步包装
|
| 174 |
+
system_prompt = (
|
| 175 |
+
"你是一名专业的文档分析师,具备深厚的行业背景知识,"
|
| 176 |
+
"能够根据用户上传的文档内容,结合上下文,进行深入的分析、总结和解读。"
|
| 177 |
+
"即使内容简略,也要尝试推断合理信息,给出高质量的答案。"
|
| 178 |
+
"请避免只字面翻译,要结合行业理解。"
|
| 179 |
+
)
|
| 180 |
+
headers = {
|
| 181 |
+
"x-api-key": os.getenv("ANTHROPIC_API_KEY"),
|
| 182 |
+
"content-type": "application/json",
|
| 183 |
+
"anthropic-version": "2023-06-01"
|
| 184 |
+
}
|
| 185 |
+
messages = [
|
| 186 |
+
{"role": "system", "content": system_prompt},
|
| 187 |
+
{"role": "user", "content": prompt}
|
| 188 |
+
]
|
| 189 |
+
payload = {
|
| 190 |
+
"model": "claude-3-sonnet-20240229",
|
| 191 |
+
"max_tokens": 512,
|
| 192 |
+
"temperature": 0.5,
|
| 193 |
+
"messages": messages
|
| 194 |
+
}
|
| 195 |
+
response = requests.post("https://api.anthropic.com/v1/messages", headers=headers, json=payload)
|
| 196 |
+
if response.status_code != 200:
|
| 197 |
+
print(f"摘要调用失败:{response.status_code} {response.text}")
|
| 198 |
+
return ""
|
| 199 |
+
data = response.json()
|
| 200 |
+
if "content" in data and isinstance(data["content"], list):
|
| 201 |
+
return data["content"][0].get("text", "")
|
| 202 |
+
return ""
|
| 203 |
+
|
| 204 |
+
def summarize_chunks(chunks: list, model_call_func) -> str:
|
| 205 |
+
summaries = []
|
| 206 |
+
for chunk in chunks:
|
| 207 |
+
prompt = f"请对以下内容进行简明扼要的总结:\n\n{chunk}"
|
| 208 |
+
result = model_call_func(prompt)
|
| 209 |
+
summaries.append(result)
|
| 210 |
+
return "\n".join(summaries)
|
| 211 |
+
|
| 212 |
+
def handle_file_upload(file, session_id):
|
| 213 |
+
if file is None:
|
| 214 |
+
return "❌ 请上传文件", [], False
|
| 215 |
+
|
| 216 |
+
ext = os.path.splitext(file.name)[1].lower()
|
| 217 |
+
if ext in [".jpg", ".jpeg", ".png"]:
|
| 218 |
+
img = Image.open(file.name).convert("RGB")
|
| 219 |
+
chunks = extract_text_from_image(img)
|
| 220 |
+
gallery = [img]
|
| 221 |
+
elif ext == ".pdf":
|
| 222 |
+
from PyPDF2 import PdfReader
|
| 223 |
+
reader = PdfReader(file.name)
|
| 224 |
+
text = "\n".join(page.extract_text() or "" for page in reader.pages)
|
| 225 |
+
chunks = text.split("\n\n")
|
| 226 |
+
gallery = []
|
| 227 |
+
elif ext == ".docx":
|
| 228 |
+
import docx
|
| 229 |
+
doc = docx.Document(file.name)
|
| 230 |
+
text = "\n".join(p.text for p in doc.paragraphs if p.text.strip())
|
| 231 |
+
chunks = text.split("\n\n")
|
| 232 |
+
gallery = []
|
| 233 |
+
elif ext == ".txt":
|
| 234 |
+
with open(file.name, "r", encoding="utf-8") as f:
|
| 235 |
+
text = f.read()
|
| 236 |
+
chunks = text.split("\n\n")
|
| 237 |
+
gallery = []
|
| 238 |
+
elif ext == ".md":
|
| 239 |
+
with open(file.name, "r", encoding="utf-8") as f:
|
| 240 |
+
text = f.read()
|
| 241 |
+
chunks = text.split("\n\n")
|
| 242 |
+
gallery = []
|
| 243 |
+
elif ext == ".csv":
|
| 244 |
+
import pandas as pd
|
| 245 |
+
df = pd.read_csv(file.name)
|
| 246 |
+
text = df.to_string()
|
| 247 |
+
chunks = text.split("\n\n")
|
| 248 |
+
gallery = []
|
| 249 |
+
elif ext == ".xlsx":
|
| 250 |
+
import pandas as pd
|
| 251 |
+
df = pd.read_excel(file.name, sheet_name=None)
|
| 252 |
+
text = "\n\n".join([df[sheet].to_string() for sheet in df])
|
| 253 |
+
chunks = text.split("\n\n")
|
| 254 |
+
gallery = []
|
| 255 |
+
else:
|
| 256 |
+
return "❌ 不支持的文件格式", [], False
|
| 257 |
+
|
| 258 |
+
if not chunks:
|
| 259 |
+
return "❌ 未提取到有效文本内容", gallery, False
|
| 260 |
+
|
| 261 |
+
# 清洗文本合并所有块
|
| 262 |
+
raw_text = "\n\n".join(chunks)
|
| 263 |
+
cleaned_text = clean_text(raw_text)
|
| 264 |
+
|
| 265 |
+
# 分段拆分
|
| 266 |
+
chunk_list = chunk_text(cleaned_text, max_chunk_size=1500)
|
| 267 |
+
|
| 268 |
+
# 生成摘要
|
| 269 |
+
summary_text = summarize_chunks(chunk_list, model_call_func)
|
| 270 |
+
|
| 271 |
+
# 将摘要插入chunks首位,方便后续检索提升相关性
|
| 272 |
+
chunks.insert(0, "[摘要]\n" + summary_text)
|
| 273 |
+
|
| 274 |
+
vectors = embed_texts(chunks)
|
| 275 |
+
index = build_index(vectors)
|
| 276 |
+
session_data[session_id] = {"chunks": chunks, "index": index, "history": []}
|
| 277 |
+
return "✅ 识别成功,已建立索引", gallery, True
|
| 278 |
+
|
| 279 |
+
def handle_user_query(query, session_id, model_name, chat_history, image_uploaded, task_mode="default"):
|
| 280 |
+
if task_mode == "summary":
|
| 281 |
+
query = "请对上传的内容进行摘要提炼。"
|
| 282 |
+
elif task_mode == "translation":
|
| 283 |
+
query = "请将上传的内容翻译成中文。"
|
| 284 |
+
elif task_mode == "qa-extract":
|
| 285 |
+
query = "请从上传内容中提取结构化的问答对。"
|
| 286 |
+
|
| 287 |
+
# 文本模式优先跳过OCR索引
|
| 288 |
+
if model_name == "text-only":
|
| 289 |
+
history = session_data.get(session_id, {}).get("history", [])
|
| 290 |
+
prompt = f"""你是一个多模态文档理解助手,能够总结上传的文件、图像或纯文本内容。请根据以下用户输入的问题进行回答。
|
| 291 |
+
|
| 292 |
+
用户问题:{query}
|
| 293 |
+
"""
|
| 294 |
+
else:
|
| 295 |
+
if image_uploaded and session_id in session_data:
|
| 296 |
+
chunks = session_data[session_id]["chunks"]
|
| 297 |
+
index = session_data[session_id]["index"]
|
| 298 |
+
history = session_data[session_id]["history"]
|
| 299 |
+
q_vec = embed_texts([query])[0]
|
| 300 |
+
top_ids = search_index(index, q_vec)
|
| 301 |
+
context = "\n".join([chunks[i] for i in top_ids])
|
| 302 |
+
MAX_PROMPT_LEN = 4000
|
| 303 |
+
if len(context) > MAX_PROMPT_LEN:
|
| 304 |
+
context = context[:MAX_PROMPT_LEN]
|
| 305 |
+
prompt = f"""你是一个文档理解助手,具备结构化内容分析能力。请基于以下文档内容尽可能准确地回答用户提出的问题。文档内容可能来自 OCR 图片、PDF、Word、Excel 等。
|
| 306 |
+
|
| 307 |
+
文档内容如下:
|
| 308 |
+
{context}
|
| 309 |
+
|
| 310 |
+
用户问题:{query}
|
| 311 |
+
"""
|
| 312 |
+
else:
|
| 313 |
+
history = session_data.get(session_id, {}).get("history", [])
|
| 314 |
+
prompt = f"""你是一个多模态文档理解助手,能够总结上传的文件、图像或纯文本内容。请根据以下用户输入的问题进行回答。
|
| 315 |
+
|
| 316 |
+
用户问题:{query}
|
| 317 |
+
"""
|
| 318 |
+
|
| 319 |
+
model_list = [model_name] if model_name != "auto" else ["claude", "deepseek", "openai"]
|
| 320 |
+
result = safe_call_model(prompt, session_id, model_list, history)
|
| 321 |
+
|
| 322 |
+
papers = fetch_related_papers(query)
|
| 323 |
+
paper_text = "\n\n📚 相关研究论文:\n" + "\n".join([f"- {p['title']}({p['url']})" for p in papers])
|
| 324 |
+
combined_answer = result["answer"] + paper_text
|
| 325 |
+
|
| 326 |
+
history += [{"role": "user", "content": query}, {"role": "assistant", "content": combined_answer}]
|
| 327 |
+
if session_id in session_data:
|
| 328 |
+
session_data[session_id]["history"] = history
|
| 329 |
+
else:
|
| 330 |
+
session_data[session_id] = {"history": history, "chunks": [], "index": None}
|
| 331 |
+
|
| 332 |
+
return history, f"模型:{result['model']} 耗时:{result['elapsed']:.2f}s 估算费用:${result['cost']:.6f}"
|
| 333 |
+
|
| 334 |
+
with gr.Blocks() as demo:
|
| 335 |
+
session_id = gr.State(f"session_{int(time.time())}_{np.random.randint(1000,9999)}")
|
| 336 |
+
|
| 337 |
+
gr.Markdown("# 📷 图片问答 + 多模型文本对话系统")
|
| 338 |
+
|
| 339 |
+
with gr.Row():
|
| 340 |
+
image_upload = gr.File(label="上传文件(支持图片 / PDF / Word / 文本 / Excel)", file_types=[".jpg", ".png", ".jpeg", ".pdf", ".docx", ".txt", ".md", ".csv", ".xlsx"])
|
| 341 |
+
upload_btn = gr.Button("识别并建立索引")
|
| 342 |
+
|
| 343 |
+
upload_status = gr.Textbox(label="上传状态", interactive=False)
|
| 344 |
+
gallery = gr.Gallery(label="上传图像")
|
| 345 |
+
|
| 346 |
+
model_select = gr.Radio(
|
| 347 |
+
["auto", "claude", "deepseek", "openai", "text-only"],
|
| 348 |
+
label="选择模型",
|
| 349 |
+
value="auto"
|
| 350 |
+
)
|
| 351 |
+
|
| 352 |
+
task_mode = gr.Radio(
|
| 353 |
+
["default", "summary", "translation", "qa-extract"],
|
| 354 |
+
label="任务类型",
|
| 355 |
+
value="default"
|
| 356 |
+
)
|
| 357 |
+
|
| 358 |
+
chatbot = gr.Chatbot(label="聊天记录", height=400, type="messages")
|
| 359 |
+
query_input = gr.Textbox(label="请输入问题")
|
| 360 |
+
query_btn = gr.Button("发送查询")
|
| 361 |
+
status_output = gr.Textbox(label="状态", interactive=False)
|
| 362 |
+
|
| 363 |
+
image_uploaded = gr.State(False)
|
| 364 |
+
|
| 365 |
+
upload_btn.click(
|
| 366 |
+
fn=handle_file_upload,
|
| 367 |
+
inputs=[image_upload, session_id],
|
| 368 |
+
outputs=[upload_status, gallery, image_uploaded]
|
| 369 |
+
)
|
| 370 |
+
|
| 371 |
+
query_btn.click(
|
| 372 |
+
fn=handle_user_query,
|
| 373 |
+
inputs=[query_input, session_id, model_select, chatbot, image_uploaded, task_mode],
|
| 374 |
+
outputs=[chatbot, status_output]
|
| 375 |
+
)
|
| 376 |
+
|
| 377 |
+
# 支持回车提交查询
|
| 378 |
+
query_input.submit(
|
| 379 |
+
fn=handle_user_query,
|
| 380 |
+
inputs=[query_input, session_id, model_select, chatbot, image_uploaded, task_mode],
|
| 381 |
+
outputs=[chatbot, status_output]
|
| 382 |
+
)
|
| 383 |
+
|
| 384 |
+
if __name__ == "__main__":
|
| 385 |
+
demo.launch()
|