Spaces:
Running
on
Zero
Running
on
Zero
| import argparse | |
| import contextlib | |
| import logging | |
| import os | |
| import re | |
| import shutil | |
| import traceback | |
| import warnings | |
| import zipfile | |
| from functools import partial | |
| from pathlib import Path | |
| from time import perf_counter as ttime | |
| from typing import Any | |
| import gradio as gr | |
| import librosa | |
| import nltk | |
| import numpy as np | |
| import spaces | |
| import torch | |
| import torchaudio | |
| from huggingface_hub import hf_hub_download | |
| from transformers import AutoModelForMaskedLM, AutoTokenizer | |
| from config import ( | |
| change_choices, | |
| get_dtype, | |
| get_weights_names, | |
| ) | |
| from config import ( | |
| infer_device as default_device, | |
| ) | |
| from GPT_SoVITS.Accelerate import PyTorch, T2SEngineProtocol, T2SRequest, backends | |
| from GPT_SoVITS.Accelerate.logger import console | |
| from GPT_SoVITS.feature_extractor import cnhubert | |
| from GPT_SoVITS.module.mel_processing import mel_spectrogram_torch, spectrogram_torch | |
| from GPT_SoVITS.module.models import SynthesizerTrn | |
| from GPT_SoVITS.process_ckpt import inspect_version | |
| from GPT_SoVITS.sv import SV | |
| from GPT_SoVITS.text import cleaned_text_to_sequence | |
| from GPT_SoVITS.text.cleaner import clean_text | |
| from GPT_SoVITS.text.LangSegmenter import LangSegmenter | |
| from tools.assets import css, js, top_html | |
| from tools.i18n.i18n import I18nAuto, scan_language_list | |
| from tools.my_utils import DictToAttrRecursive | |
| warnings.filterwarnings( | |
| "ignore", message="MPS: The constant padding of more than 3 dimensions is not currently supported natively." | |
| ) | |
| warnings.filterwarnings("ignore", message=".*ComplexHalf support is experimental.*") | |
| logging.getLogger("markdown_it").setLevel(logging.ERROR) | |
| logging.getLogger("urllib3").setLevel(logging.ERROR) | |
| logging.getLogger("httpcore").setLevel(logging.ERROR) | |
| logging.getLogger("httpx").setLevel(logging.ERROR) | |
| logging.getLogger("asyncio").setLevel(logging.ERROR) | |
| logging.getLogger("charset_normalizer").setLevel(logging.ERROR) | |
| logging.getLogger("torchaudio._extension").setLevel(logging.ERROR) | |
| logging.getLogger("multipart.multipart").setLevel(logging.ERROR) | |
| os.environ["TOKENIZERS_PARALLELISM"] = "false" | |
| os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1" | |
| nltk.download("averaged_perceptron_tagger_eng") | |
| def install(): | |
| base = Path("GPT_SoVITS") | |
| zip_path = hf_hub_download("XXXXRT/GPT-SoVITS-Pretrained", "pretrained_models.zip", repo_type="model") | |
| tmp = base / "tmp_unzip" | |
| if tmp.exists(): | |
| shutil.rmtree(tmp) | |
| with zipfile.ZipFile(zip_path) as zf: | |
| zf.extractall(tmp) | |
| folder = next(tmp.iterdir()) | |
| shutil.move(str(folder), base / folder.name) | |
| shutil.rmtree(tmp) | |
| install() | |
| _LANG_RE = re.compile(r"^[a-z]{2}[_-][A-Z]{2}$") | |
| def lang_type(text: str) -> str: | |
| if text == "Auto": | |
| return text | |
| if not _LANG_RE.match(text): | |
| raise argparse.ArgumentTypeError(f"Unspported Format: {text}, Expected ll_CC/ll-CC") | |
| ll, cc = re.split(r"[_-]", text) | |
| language = f"{ll}_{cc}" | |
| if language in scan_language_list(): | |
| return language | |
| else: | |
| return "Auto" | |
| def build_parser() -> argparse.ArgumentParser: | |
| p = argparse.ArgumentParser( | |
| prog="inference_webui", | |
| description=f"python -s -m GPT_SoVITS.inference_webui zh_CN -b {backends[-1]}", | |
| ) | |
| p.add_argument( | |
| "language", | |
| nargs="?", | |
| default="Auto", | |
| type=lang_type, | |
| help="Language Code, Such as zh_CN, en-US", | |
| ) | |
| p.add_argument( | |
| "--backends", | |
| "-b", | |
| choices=backends, | |
| default=backends[-1], | |
| help="AR Inference Backend", | |
| required=False, | |
| ) | |
| p.add_argument( | |
| "--device", | |
| "-d", | |
| default=str(default_device), | |
| help="Inference Device", | |
| required=False, | |
| ) | |
| p.add_argument( | |
| "--port", | |
| "-p", | |
| default=9872, | |
| type=int, | |
| help="WebUI Binding Port", | |
| required=False, | |
| ) | |
| p.add_argument( | |
| "--share", | |
| "-s", | |
| default=False, | |
| action="store_true", | |
| help="Gradio Share Link", | |
| required=False, | |
| ) | |
| p.add_argument( | |
| "--cnhubert", | |
| default="GPT_SoVITS/pretrained_models/chinese-hubert-base", | |
| help="CNHuBERT Pretrain", | |
| required=False, | |
| ) | |
| p.add_argument( | |
| "--bert", | |
| default="GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large", | |
| help="BERT Pretrain", | |
| required=False, | |
| ) | |
| p.add_argument( | |
| "--gpt", | |
| default="", | |
| help="GPT Model", | |
| required=False, | |
| ) | |
| p.add_argument( | |
| "--sovits", | |
| default="", | |
| help="SoVITS Model", | |
| required=False, | |
| ) | |
| return p | |
| args = build_parser().parse_args() | |
| hps: Any = None | |
| vq_model: SynthesizerTrn | None = None | |
| t2s_engine: T2SEngineProtocol | None = None | |
| version = model_version = "v2" | |
| cnhubert_base_path = str(args.cnhubert) | |
| bert_path = str(args.bert) | |
| infer_ttswebui = int(args.port) | |
| is_share = bool(args.share) | |
| i18n = I18nAuto(language=args.language) | |
| ar_backend: str = args.backends | |
| change_choices_i18n = partial(change_choices, i18n=i18n) | |
| SoVITS_names, GPT_names = get_weights_names(i18n) | |
| dict_language_v1 = { | |
| i18n("中文"): "all_zh", # 全部按中文识别 | |
| i18n("英文"): "en", # 全部按英文识别 | |
| i18n("日文"): "all_ja", # 全部按日文识别 | |
| i18n("中英混合"): "zh", # 按中英混合识别 | |
| i18n("日英混合"): "ja", # 按日英混合识别 | |
| i18n("多语种混合"): "auto", # 多语种启动切分识别语种 | |
| } | |
| dict_language_v2 = { | |
| i18n("中文"): "all_zh", # 全部按中文识别 | |
| i18n("英文"): "en", # 全部按英文识别 | |
| i18n("日文"): "all_ja", # 全部按日文识别 | |
| i18n("粤语"): "all_yue", # 全部按粤语识别 | |
| i18n("韩文"): "all_ko", # 全部按韩文识别 | |
| i18n("中英混合"): "zh", | |
| i18n("日英混合"): "ja", | |
| i18n("粤英混合"): "yue", | |
| i18n("韩英混合"): "ko", | |
| i18n("多语种混合"): "auto", # 多语种启动切分识别语种 | |
| i18n("多语种混合(粤语)"): "auto_yue", # 多语种启动切分识别语种 | |
| } | |
| dict_language = dict_language_v1 if version == "v1" else dict_language_v2 | |
| punctuation = set(["!", "?", "…", ",", ".", "-", " "]) | |
| splits = {",", "。", "?", "!", ",", ".", "?", "!", "~", ":", ":", "—", "…"} | |
| v3v4set = {"v3", "v4"} | |
| infer_device = torch.device(args.device) | |
| device = infer_device if infer_device.type == "cuda" else torch.device("cpu") | |
| dtype = get_dtype(device.index) | |
| is_half = dtype == torch.float16 | |
| tokenizer = AutoTokenizer.from_pretrained(bert_path) | |
| bert_model = AutoModelForMaskedLM.from_pretrained(bert_path).to(infer_device, dtype) | |
| cnhubert.cnhubert_base_path = cnhubert_base_path | |
| ssl_model = cnhubert.get_model().to(infer_device, dtype) | |
| spec_min = -12 | |
| spec_max = 2 | |
| def norm_spec(x): | |
| return (x - spec_min) / (spec_max - spec_min) * 2 - 1 | |
| def denorm_spec(x): | |
| return (x + 1) / 2 * (spec_max - spec_min) + spec_min | |
| def mel_fn(x): | |
| return mel_spectrogram_torch( | |
| y=x, | |
| n_fft=1024, | |
| num_mels=100, | |
| sampling_rate=24000, | |
| hop_size=256, | |
| win_size=1024, | |
| fmin=0, | |
| fmax=None, | |
| center=False, | |
| ) | |
| def mel_fn_v4(x): | |
| return mel_spectrogram_torch( | |
| y=x, | |
| n_fft=1280, | |
| num_mels=100, | |
| sampling_rate=32000, | |
| hop_size=320, | |
| win_size=1280, | |
| fmin=0, | |
| fmax=None, | |
| center=False, | |
| ) | |
| gpt_path = str(args.gpt) or GPT_names[0][-1] | |
| sovits_path = str(args.sovits) or SoVITS_names[0][-1] | |
| def get_bert_feature(text, word2ph): | |
| inputs = tokenizer(text, return_tensors="pt") | |
| for i in inputs: | |
| inputs[i] = inputs[i].to(infer_device) | |
| res = bert_model(**inputs, output_hidden_states=True) | |
| res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()[1:-1] | |
| assert len(word2ph) == len(text) | |
| phone_level_feature = [] | |
| for i in range(len(word2ph)): | |
| repeat_feature = res[i].repeat(word2ph[i], 1) | |
| phone_level_feature.append(repeat_feature) | |
| phone_level_feature_t = torch.cat(phone_level_feature, dim=0) | |
| return phone_level_feature_t.T | |
| def change_sovits_weights(sovits_path, prompt_language=None, text_language=None): | |
| global vq_model, hps, version, model_version, dict_language | |
| model_version, version, is_lora, hps, dict_s2 = inspect_version(sovits_path) | |
| print(sovits_path, version, model_version, is_lora) | |
| dict_language = dict_language_v1 if version == "v1" else dict_language_v2 | |
| visible_sample_steps = visible_inp_refs = None | |
| if prompt_language is not None and text_language is not None: | |
| if prompt_language in list(dict_language.keys()): | |
| prompt_text_update, prompt_language_update = gr.skip(), gr.update(choices=list(dict_language.keys())) | |
| else: | |
| prompt_text_update = gr.update(value="") | |
| prompt_language_update = gr.update(value=i18n("中文"), choices=list(dict_language.keys())) | |
| if text_language in list(dict_language.keys()): | |
| text_update, text_language_update = gr.skip(), gr.skip() | |
| else: | |
| text_update = gr.update(value="") | |
| text_language_update = gr.update(value=i18n("中文"), choices=list(dict_language.keys())) | |
| if model_version in v3v4set: | |
| visible_sample_steps = True | |
| visible_inp_refs = False | |
| else: | |
| visible_sample_steps = False | |
| visible_inp_refs = True | |
| yield ( | |
| prompt_text_update, | |
| prompt_language_update, | |
| text_update, | |
| text_language_update, | |
| gr.update( | |
| visible=visible_sample_steps, | |
| value=32 if model_version == "v3" else 8, | |
| choices=[4, 8, 16, 32, 64, 128] if model_version == "v3" else [4, 8, 16, 32], | |
| ), | |
| gr.update(visible=visible_inp_refs), | |
| gr.update(value=False, interactive=True if model_version not in v3v4set else False), | |
| gr.update(visible=True if model_version == "v3" else False), | |
| gr.update(value=i18n("模型加载中,请等待"), interactive=False), | |
| ) | |
| hps = DictToAttrRecursive(hps) | |
| hps.model.semantic_frame_rate = "25hz" | |
| hps.model.version = model_version | |
| if model_version not in v3v4set: | |
| vq_model = SynthesizerTrn( | |
| hps.data.filter_length // 2 + 1, | |
| hps.train.segment_size // hps.data.hop_length, | |
| n_speakers=hps.data.n_speakers, | |
| **hps.model, | |
| ) | |
| else: | |
| raise RuntimeError("Unsupported model version") | |
| if "pretrained" not in sovits_path: | |
| if hasattr(vq_model, "enc_q"): | |
| del vq_model.enc_q | |
| if is_lora is False: | |
| console.print(f">> loading sovits_{model_version}", vq_model.load_state_dict(dict_s2["weight"], strict=False)) | |
| else: | |
| RuntimeError("Unsupported model version") | |
| vq_model = vq_model.to(infer_device, dtype) | |
| yield ( | |
| gr.skip(), | |
| gr.skip(), | |
| gr.skip(), | |
| gr.skip(), | |
| gr.skip(), | |
| gr.skip(), | |
| gr.skip(), | |
| gr.skip(), | |
| gr.update(value=i18n("合成语音"), interactive=True), | |
| ) | |
| with contextlib.suppress(UnboundLocalError): | |
| next(change_sovits_weights(sovits_path)) | |
| def change_gpt_weights(gpt_path): | |
| global t2s_engine, config | |
| t2s_engine = PyTorch.T2SEngineTorch( | |
| PyTorch.T2SEngineTorch.load_decoder(Path(gpt_path), backend=ar_backend), | |
| device, | |
| dtype=dtype, | |
| ) | |
| # t2s_engine.decoder_model.compile() | |
| total = sum(p.numel() for p in t2s_engine.decoder_model.parameters()) | |
| console.print(">> Number of parameter: %.2fM" % (total / 1e6)) | |
| change_gpt_weights(gpt_path) | |
| sv_cn_model = SV(infer_device, is_half) | |
| resample_transform_dict = {} | |
| def resample(audio_tensor, sr0, sr1, device): | |
| global resample_transform_dict | |
| key = f"{sr0}-{sr1}-{device}" | |
| if key not in resample_transform_dict: | |
| resample_transform_dict[key] = torchaudio.transforms.Resample(sr0, sr1).to(device) | |
| return resample_transform_dict[key](audio_tensor) | |
| def get_spepc(hps, filename, dtype, device, is_v2pro=False): | |
| sr1 = int(hps.data.sampling_rate) | |
| audio, sr0 = torchaudio.load_with_torchcodec(filename) | |
| audio = audio.to(device) | |
| if sr0 != sr1: | |
| audio = resample(audio, sr0, sr1, device) | |
| if audio.shape[0] > 1: | |
| audio = audio.mean(0).unsqueeze(0) | |
| maxx = float(audio.abs().max()) | |
| if maxx > 1: | |
| audio /= min(2, maxx) | |
| spec = spectrogram_torch( | |
| audio, | |
| hps.data.filter_length, | |
| hps.data.sampling_rate, | |
| hps.data.hop_length, | |
| hps.data.win_length, | |
| center=False, | |
| ) | |
| spec = spec.to(dtype) | |
| if is_v2pro is True: | |
| audio = resample(audio, sr1, 16000, device).to(dtype) | |
| return spec, audio | |
| def clean_text_inf(text, language, version): | |
| language = language.replace("all_", "") | |
| phones, word2ph, norm_text = clean_text(text, language, version) | |
| phones = cleaned_text_to_sequence(phones, version) | |
| return phones, word2ph, norm_text | |
| def get_bert_inf(phones, word2ph, norm_text, language): | |
| language = language.replace("all_", "") | |
| if language == "zh": | |
| bert = get_bert_feature(norm_text, word2ph).to(device) # .to(dtype) | |
| else: | |
| bert = torch.zeros( | |
| (1024, len(phones)), | |
| dtype=torch.float16 if is_half is True else torch.float32, | |
| ).to(device) | |
| return bert | |
| def get_first(text): | |
| pattern = "[" + "".join(re.escape(sep) for sep in splits) + "]" | |
| text = re.split(pattern, text)[0].strip() | |
| return text | |
| def get_phones_and_bert(text, language, version, final=False): | |
| text = re.sub(r" {2,}", " ", text) | |
| textlist = [] | |
| langlist = [] | |
| if language == "all_zh": | |
| for tmp in LangSegmenter.getTexts(text, "zh"): | |
| langlist.append(tmp["lang"]) | |
| textlist.append(tmp["text"]) | |
| elif language == "all_yue": | |
| for tmp in LangSegmenter.getTexts(text, "zh"): | |
| if tmp["lang"] == "zh": | |
| tmp["lang"] = "yue" | |
| langlist.append(tmp["lang"]) | |
| textlist.append(tmp["text"]) | |
| elif language == "all_ja": | |
| for tmp in LangSegmenter.getTexts(text, "ja"): | |
| langlist.append(tmp["lang"]) | |
| textlist.append(tmp["text"]) | |
| elif language == "all_ko": | |
| for tmp in LangSegmenter.getTexts(text, "ko"): | |
| langlist.append(tmp["lang"]) | |
| textlist.append(tmp["text"]) | |
| elif language == "en": | |
| langlist.append("en") | |
| textlist.append(text) | |
| elif language == "auto": | |
| for tmp in LangSegmenter.getTexts(text): | |
| langlist.append(tmp["lang"]) | |
| textlist.append(tmp["text"]) | |
| elif language == "auto_yue": | |
| for tmp in LangSegmenter.getTexts(text): | |
| if tmp["lang"] == "zh": | |
| tmp["lang"] = "yue" | |
| langlist.append(tmp["lang"]) | |
| textlist.append(tmp["text"]) | |
| else: | |
| for tmp in LangSegmenter.getTexts(text): | |
| if langlist: | |
| if (tmp["lang"] == "en" and langlist[-1] == "en") or (tmp["lang"] != "en" and langlist[-1] != "en"): | |
| textlist[-1] += tmp["text"] | |
| continue | |
| if tmp["lang"] == "en": | |
| langlist.append(tmp["lang"]) | |
| else: | |
| # 因无法区别中日韩文汉字,以用户输入为准 | |
| langlist.append(language) | |
| textlist.append(tmp["text"]) | |
| print(textlist) | |
| print(langlist) | |
| phones_list = [] | |
| bert_list = [] | |
| norm_text_list = [] | |
| for i in range(len(textlist)): | |
| lang = langlist[i] | |
| phones, word2ph, norm_text = clean_text_inf(textlist[i], lang, version) | |
| bert = get_bert_inf(phones, word2ph, norm_text, lang) | |
| phones_list.append(phones) | |
| norm_text_list.append(norm_text) | |
| bert_list.append(bert) | |
| bert = torch.cat(bert_list, dim=1) | |
| phones = sum(phones_list, []) | |
| norm_text = "".join(norm_text_list) | |
| if not final and len(phones) < 6: | |
| return get_phones_and_bert("." + text, language, version, final=True) | |
| return phones, bert.to(dtype), norm_text | |
| def merge_short_text_in_array(texts, threshold): | |
| if (len(texts)) < 2: | |
| return texts | |
| result = [] | |
| text = "" | |
| for ele in texts: | |
| text += ele | |
| if len(text) >= threshold: | |
| result.append(text) | |
| text = "" | |
| if len(text) > 0: | |
| if len(result) == 0: | |
| result.append(text) | |
| else: | |
| result[len(result) - 1] += text | |
| return result | |
| sr_model = None | |
| cache: dict[int, Any] = {} | |
| def get_tts_wav( | |
| ref_wav_path, | |
| prompt_text, | |
| prompt_language, | |
| text, | |
| text_language, | |
| how_to_cut=i18n("不切"), | |
| top_k=20, | |
| top_p=0.6, | |
| temperature=0.6, | |
| ref_free=False, | |
| speed=1, | |
| if_freeze=False, | |
| inp_refs=None, | |
| sample_steps=8, | |
| if_sr=False, | |
| pause_second=0.3, | |
| ): | |
| torch.set_grad_enabled(False) | |
| ttfb_time = ttime() | |
| if not ref_wav_path: | |
| raise gr.Error(i18n("请上传参考音频")) | |
| if not text: | |
| raise gr.Error(i18n("请填入推理文本")) | |
| t = [] | |
| if prompt_text is None or len(prompt_text) == 0: | |
| ref_free = True | |
| if model_version in v3v4set: | |
| ref_free = False # s2v3暂不支持ref_free | |
| t0 = ttime() | |
| prompt_language = dict_language[prompt_language] | |
| text_language = dict_language[text_language] | |
| if not ref_free: | |
| prompt_text = prompt_text.strip("\n") | |
| if prompt_text[-1] not in splits: | |
| prompt_text += "。" if prompt_language != "en" else "." | |
| print(">>", i18n("实际输入的参考文本:"), prompt_text) | |
| text = text.strip("\n") | |
| # if (text[0] not in splits and len(get_first(text)) < 4): text = "。" + text if text_language != "en" else "." + text | |
| print(">>", i18n("实际输入的目标文本:"), text) | |
| zero_wav = np.zeros( | |
| int(hps.data.sampling_rate * pause_second), | |
| dtype=np.float16 if is_half is True else np.float32, | |
| ) | |
| zero_wav_torch = torch.from_numpy(zero_wav) | |
| if is_half is True: | |
| zero_wav_torch = zero_wav_torch.half().to(infer_device) | |
| else: | |
| zero_wav_torch = zero_wav_torch.to(infer_device) | |
| if not ref_free: | |
| assert vq_model | |
| wav16k, sr = librosa.load(ref_wav_path, sr=16000) | |
| if wav16k.shape[0] > 160000 or wav16k.shape[0] < 48000: | |
| gr.Warning(i18n("参考音频在3~10秒范围外,请更换!")) | |
| raise OSError(i18n("参考音频在3~10秒范围外,请更换!")) | |
| wav16k_t = torch.from_numpy(wav16k) | |
| if is_half is True: | |
| wav16k_t = wav16k_t.half().to(infer_device) | |
| else: | |
| wav16k_t = wav16k_t.to(infer_device) | |
| wav16k_t = torch.cat([wav16k_t, zero_wav_torch]) | |
| ssl_content = ssl_model.model(wav16k_t.unsqueeze(0))["last_hidden_state"].transpose(1, 2) # .float() | |
| codes = vq_model.extract_latent(ssl_content) | |
| prompt_semantic = codes[0, 0] | |
| prompt = prompt_semantic.unsqueeze(0).to(device) | |
| else: | |
| prompt = torch.zeros((1, 0)).to(device, torch.int32) | |
| t1 = ttime() | |
| t.append(t1 - t0) | |
| if how_to_cut == i18n("凑四句一切"): | |
| text = cut1(text) | |
| elif how_to_cut == i18n("凑50字一切"): | |
| text = cut2(text) | |
| elif how_to_cut == i18n("按中文句号。切"): | |
| text = cut3(text) | |
| elif how_to_cut == i18n("按英文句号.切"): | |
| text = cut4(text) | |
| elif how_to_cut == i18n("按标点符号切"): | |
| text = cut5(text) | |
| while "\n\n" in text: | |
| text = text.replace("\n\n", "\n") | |
| texts = text.split("\n") | |
| texts = process_text(texts) | |
| texts = merge_short_text_in_array(texts, 5) | |
| audio_opt = [] | |
| # s2v3暂不支持ref_free | |
| if not ref_free: | |
| phones1, bert1, _ = get_phones_and_bert(prompt_text, prompt_language, version) | |
| else: | |
| phones1, bert1 = [], torch.zeros(1024, 0).to(device, dtype) | |
| infer_len: list[int] = [] | |
| infer_time: list[float] = [] | |
| assert vq_model | |
| for i_text, text in enumerate(texts): | |
| # 解决输入目标文本的空行导致报错的问题 | |
| if len(text.strip()) == 0: | |
| continue | |
| if text[-1] not in splits: | |
| text += "。" if text_language != "en" else "." | |
| print(">>", i18n("实际输入的目标文本(每句):"), text) | |
| phones2, bert2, norm_text2 = get_phones_and_bert(text, text_language, version) | |
| print(">>", i18n("前端处理后的文本(每句):"), norm_text2) | |
| bert = torch.cat([bert1, bert2], 1) | |
| all_phoneme_ids = torch.LongTensor(phones1 + phones2).to(device).unsqueeze(0) | |
| bert = bert.to(device).unsqueeze(0) | |
| all_phoneme_len = torch.tensor([all_phoneme_ids.shape[-1]]).to(device) | |
| t2 = ttime() | |
| if i_text in cache and if_freeze is True: | |
| pred_semantic = cache[i_text] | |
| else: | |
| t2s_request = T2SRequest( | |
| [all_phoneme_ids.squeeze(0)], | |
| all_phoneme_len, | |
| prompt, | |
| [bert.squeeze(0)], | |
| valid_length=1, | |
| top_k=top_k, | |
| top_p=top_p, | |
| temperature=temperature, | |
| early_stop_num=1500, | |
| use_cuda_graph=torch.cuda.is_available(), | |
| # debug=True, | |
| ) | |
| assert t2s_engine | |
| t2s_result = t2s_engine.generate(t2s_request) | |
| if t2s_result.exception is not None: | |
| console.print(t2s_result.traceback) | |
| raise RuntimeError() | |
| pred_semantic_list = t2s_result.result | |
| assert pred_semantic_list, t2s_result.traceback | |
| pred_semantic = pred_semantic_list[0].unsqueeze(0).to(infer_device) | |
| infer_len.append(pred_semantic.shape[-1]) | |
| infer_time.append(t2s_result.infer_speed[-1]) | |
| cache[i_text] = pred_semantic | |
| t3 = ttime() | |
| is_v2pro = model_version in {"v2Pro", "v2ProPlus"} | |
| sv_emb: list[torch.Tensor] = [] | |
| if model_version not in v3v4set: | |
| refers = [] | |
| if inp_refs: | |
| for path in inp_refs: | |
| try: # 这里加上提取sv的逻辑,要么一堆sv一堆refer,要么单个sv单个refer | |
| refer, audio_tensor = get_spepc(hps, path.name, dtype, infer_device, is_v2pro) | |
| refers.append(refer) | |
| if is_v2pro: | |
| assert sv_cn_model | |
| sv_emb.append(sv_cn_model.compute_embedding(audio_tensor)) | |
| except Exception as e: | |
| print(e) | |
| traceback.print_exc() | |
| if len(refers) == 0: | |
| refers, audio_tensor = get_spepc(hps, ref_wav_path, dtype, infer_device, is_v2pro) | |
| refers = [refers] | |
| if is_v2pro: | |
| assert sv_cn_model | |
| sv_emb = [sv_cn_model.compute_embedding(audio_tensor)] | |
| if is_v2pro: | |
| audio = vq_model.decode( | |
| pred_semantic, | |
| torch.LongTensor(phones2).to(infer_device).unsqueeze(0), | |
| refers, | |
| speed=speed, | |
| sv_emb=sv_emb, | |
| )[0][0] # type: ignore | |
| else: | |
| audio = vq_model.decode( | |
| pred_semantic, | |
| torch.LongTensor(phones2).to(infer_device).unsqueeze(0), | |
| refers, | |
| speed=speed, | |
| )[0][0] # type: ignore | |
| else: | |
| raise RuntimeError("Unsupported model version") | |
| if i_text == 0: | |
| ttfb_time = ttime() - ttfb_time | |
| max_audio = torch.abs(audio).max() # 简单防止16bit爆音 | |
| if max_audio > 1: | |
| audio = audio / max_audio | |
| audio_opt.append(audio) | |
| audio_opt.append(zero_wav_torch) # zero_wav | |
| t4 = ttime() | |
| t.extend([t2 - t1, t3 - t2, t4 - t3]) | |
| t1 = ttime() | |
| audio_opt_t = torch.cat(audio_opt, 0) # np.concatenate | |
| opt_sr = 32000 | |
| audio_opt_n = audio_opt_t.cpu().numpy() | |
| t0 = t[0] | |
| t1 = sum(t[1::3]) | |
| t2 = sum(t[2::3]) | |
| t3 = sum(t[3::3]) | |
| infer_speed_avg = sum(infer_len) / sum(infer_time) | |
| rtf_value = sum(t) / (audio_opt_n.__len__() / opt_sr) | |
| console.print(f">> Time Stamps: {t0:.3f}\t{t1:.3f}\t{t2:.3f}\t{t3:.3f}") | |
| console.print(f">> Infer Speed: {infer_speed_avg:.2f} Token/s") | |
| console.print(f">> RTF: {rtf_value:.2f}") | |
| if ttfb_time > 2: | |
| console.print(f">> TTFB: {ttfb_time:.3f} s") | |
| else: | |
| console.print(f">> TTFB: {ttfb_time * 1000:.3f} ms") | |
| gr.Info(f"{infer_speed_avg:.2f} Token/s", title="Infer Speed") | |
| gr.Info(f"{rtf_value:.2f}", title="RTF") | |
| if ttfb_time > 2: | |
| gr.Info(f"TTFB: {ttfb_time:.3f} s") | |
| else: | |
| gr.Info(f"TTFB: {ttfb_time * 1000:.3f} ms") | |
| if torch.cuda.is_available(): | |
| torch.cuda.empty_cache() | |
| yield opt_sr, (audio_opt_n * 32767).astype(np.int16) | |
| def split(todo_text): | |
| todo_text = todo_text.replace("……", "。").replace("——", ",") | |
| if todo_text[-1] not in splits: | |
| todo_text += "。" | |
| i_split_head = i_split_tail = 0 | |
| len_text = len(todo_text) | |
| todo_texts = [] | |
| while 1: | |
| if i_split_head >= len_text: | |
| break # 结尾一定有标点,所以直接跳出即可,最后一段在上次已加入 | |
| if todo_text[i_split_head] in splits: | |
| i_split_head += 1 | |
| todo_texts.append(todo_text[i_split_tail:i_split_head]) | |
| i_split_tail = i_split_head | |
| else: | |
| i_split_head += 1 | |
| return todo_texts | |
| def cut1(inp): | |
| inp = inp.strip("\n") | |
| inps = split(inp) | |
| split_idx: list[int | None] = list(range(0, len(inps) + 1, 4)) | |
| split_idx[-1] = None | |
| if len(split_idx) > 1: | |
| opts = [] | |
| for idx in range(len(split_idx) - 1): | |
| opts.append("".join(inps[split_idx[idx] : split_idx[idx + 1]])) | |
| else: | |
| opts = [inp] | |
| opts = [item for item in opts if not set(item).issubset(punctuation)] | |
| return "\n".join(opts) | |
| def cut2(inp): | |
| inp = inp.strip("\n") | |
| inps = split(inp) | |
| if len(inps) < 2: | |
| return inp | |
| opts = [] | |
| summ = 0 | |
| tmp_str = "" | |
| for i in range(len(inps)): | |
| summ += len(inps[i]) | |
| tmp_str += inps[i] | |
| if summ > 50: | |
| summ = 0 | |
| opts.append(tmp_str) | |
| tmp_str = "" | |
| if tmp_str != "": | |
| opts.append(tmp_str) | |
| if len(opts) > 1 and len(opts[-1]) < 50: # 如果最后一个太短了,和前一个合一起 | |
| opts[-2] = opts[-2] + opts[-1] | |
| opts = opts[:-1] | |
| opts = [item for item in opts if not set(item).issubset(punctuation)] | |
| return "\n".join(opts) | |
| def cut3(inp): | |
| inp = inp.strip("\n") | |
| opts = inp.strip("。").split("。") | |
| opts = [item for item in opts if not set(item).issubset(punctuation)] | |
| return "\n".join(opts) | |
| def cut4(inp): | |
| inp = inp.strip("\n") | |
| opts = re.split(r"(?<!\d)\.(?!\d)", inp.strip(".")) | |
| opts = [item for item in opts if not set(item).issubset(punctuation)] | |
| return "\n".join(opts) | |
| # contributed by https://github.com/AI-Hobbyist/GPT-SoVITS/blob/main/GPT_SoVITS/inference_webui.py | |
| def cut5(inp): | |
| inp = inp.strip("\n") | |
| punds = {",", ".", ";", "?", "!", "、", ",", "。", "?", "!", ";", ":", "…"} | |
| mergeitems = [] | |
| items = [] | |
| for i, char in enumerate(inp): | |
| if char in punds: | |
| if char == "." and i > 0 and i < len(inp) - 1 and inp[i - 1].isdigit() and inp[i + 1].isdigit(): | |
| items.append(char) | |
| else: | |
| items.append(char) | |
| mergeitems.append("".join(items)) | |
| items = [] | |
| else: | |
| items.append(char) | |
| if items: | |
| mergeitems.append("".join(items)) | |
| opt = [item for item in mergeitems if not set(item).issubset(punds)] | |
| return "\n".join(opt) | |
| def process_text(texts): | |
| _text = [] | |
| if all(text in [None, " ", "\n", ""] for text in texts): | |
| raise ValueError(i18n("请输入有效文本")) | |
| for text in texts: | |
| if text in [None, " ", ""]: | |
| pass | |
| else: | |
| _text.append(text) | |
| return _text | |
| def html_center(text, label="p"): | |
| return f"""<div style="text-align: center; margin: 100; padding: 50;"> | |
| <{label} style="margin: 0; padding: 0;">{text}</{label}> | |
| </div>""" | |
| def html_left(text, label="p"): | |
| return f"""<div style="text-align: left; margin: 0; padding: 0;"> | |
| <{label} style="margin: 0; padding: 0;">{text}</{label}> | |
| </div>""" | |
| with gr.Blocks(title="GPT-SoVITS WebUI", analytics_enabled=False, js=js, css=css) as app: | |
| gr.HTML( | |
| top_html.format( | |
| i18n("本软件以MIT协议开源, 作者不对软件具备任何控制力, 使用软件者、传播软件导出的声音者自负全责.") | |
| + i18n("如不认可该条款, 则不能使用或引用软件包内任何代码和文件. 详见根目录LICENSE.") | |
| ), | |
| elem_classes="markdown", | |
| ) | |
| gr.Markdown(html_center(i18n("模型切换"), "h3")) | |
| with gr.Row(equal_height=True): | |
| with gr.Column(scale=2): | |
| with gr.Row(equal_height=True): | |
| GPT_dropdown = gr.Dropdown( | |
| label=i18n("GPT模型列表"), | |
| choices=GPT_names, | |
| value=gpt_path, | |
| interactive=True, | |
| ) | |
| SoVITS_dropdown = gr.Dropdown( | |
| label=i18n("SoVITS模型列表"), | |
| choices=SoVITS_names, | |
| value=sovits_path, | |
| interactive=True, | |
| ) | |
| with gr.Column(scale=1): | |
| refresh_button = gr.Button(i18n("刷新模型路径"), variant="primary", scale=14) | |
| refresh_button.click(fn=change_choices_i18n, inputs=[], outputs=[SoVITS_dropdown, GPT_dropdown]) | |
| gr.Markdown(html_center(i18n("*请上传并填写参考信息"), "h3")) | |
| with gr.Row(equal_height=True): | |
| with gr.Column(scale=2): | |
| with gr.Row(equal_height=True): | |
| with gr.Column(scale=1): | |
| inp_ref = gr.Audio( | |
| label=i18n("请上传3~10秒内参考音频,超过会报错!"), | |
| type="filepath", | |
| sources="upload", | |
| scale=13, | |
| editable=False, | |
| waveform_options={"show_recording_waveform": False}, | |
| ) | |
| with gr.Column(scale=1): | |
| gr.Markdown( | |
| html_center( | |
| i18n("使用无参考文本模式时建议使用微调的GPT") | |
| + "<br>" | |
| + i18n("听不清参考音频说的啥(不晓得写啥)可以开。开启后无视填写的参考文本。") | |
| ) | |
| ) | |
| ref_text_free = gr.Checkbox( | |
| label=i18n("开启无参考文本模式"), | |
| info=i18n("不填参考文本亦相当于开启") + ", " + i18n("v3暂不支持该模式,使用了会报错。"), | |
| value=False, | |
| interactive=True if model_version not in v3v4set else False, | |
| show_label=True, | |
| scale=1, | |
| ) | |
| prompt_language = gr.Dropdown( | |
| label="", | |
| info=i18n("参考音频的语种"), | |
| choices=list(dict_language.keys()), | |
| value=i18n("中文"), | |
| ) | |
| prompt_text = gr.Textbox(label="", info=i18n("参考音频的文本"), value="", lines=3, max_lines=3) | |
| with gr.Column(scale=1): | |
| inp_refs = ( | |
| gr.File( | |
| label=i18n( | |
| "可选项:通过拖拽多个文件上传多个参考音频(建议同性),平均融合他们的音色。如不填写此项,音色由左侧单个参考音频控制。如是微调模型,建议参考音频全部在微调训练集音色内,底模不用管。" | |
| ), | |
| file_count="multiple", | |
| ) | |
| if model_version not in v3v4set | |
| else gr.File( | |
| label=i18n( | |
| "可选项:通过拖拽多个文件上传多个参考音频(建议同性),平均融合他们的音色。如不填写此项,音色由左侧单个参考音频控制。如是微调模型,建议参考音频全部在微调训练集音色内,底模不用管。" | |
| ), | |
| file_count="multiple", | |
| visible=False, | |
| ) | |
| ) | |
| sample_steps = ( | |
| gr.Radio( | |
| label=i18n("采样步数,如果觉得电,提高试试,如果觉得慢,降低试试"), | |
| value=32 if model_version == "v3" else 8, | |
| choices=[4, 8, 16, 32, 64, 128] if model_version == "v3" else [4, 8, 16, 32], | |
| visible=True, | |
| ) | |
| if model_version in v3v4set | |
| else gr.Radio( | |
| label=i18n("采样步数,如果觉得电,提高试试,如果觉得慢,降低试试"), | |
| choices=[4, 8, 16, 32, 64, 128] if model_version == "v3" else [4, 8, 16, 32], | |
| visible=False, | |
| value=32 if model_version == "v3" else 8, | |
| ) | |
| ) | |
| if_sr_Checkbox = gr.Checkbox( | |
| label=i18n("v3输出如果觉得闷可以试试开超分"), | |
| value=False, | |
| interactive=True, | |
| show_label=True, | |
| visible=False if model_version != "v3" else True, | |
| ) | |
| gr.Markdown(html_center(i18n("*请填写需要合成的目标文本和语种模式"), "h3")) | |
| with gr.Row(equal_height=True): | |
| with gr.Column(scale=2): | |
| text = gr.Textbox(label=i18n("需要合成的文本"), value="", lines=30, max_lines=40) | |
| with gr.Column(scale=1): | |
| text_language = gr.Dropdown( | |
| label=i18n("需要合成的语种") + i18n(".限制范围越小判别效果越好。"), | |
| choices=list(dict_language.keys()), | |
| value=i18n("中文"), | |
| scale=1, | |
| ) | |
| how_to_cut = gr.Dropdown( | |
| label=i18n("怎么切"), | |
| choices=[ | |
| i18n("不切"), | |
| i18n("凑四句一切"), | |
| i18n("凑50字一切"), | |
| i18n("按中文句号。切"), | |
| i18n("按英文句号.切"), | |
| i18n("按标点符号切"), | |
| ], | |
| value=i18n("凑四句一切"), | |
| interactive=True, | |
| scale=1, | |
| ) | |
| if_freeze = gr.Checkbox( | |
| label=i18n("是否直接对上次合成结果调整语速和音色"), | |
| value=False, | |
| interactive=True, | |
| show_label=True, | |
| scale=1, | |
| ) | |
| with gr.Row(equal_height=True): | |
| speed = gr.Slider( | |
| minimum=0.6, maximum=1.65, step=0.05, label=i18n("语速"), value=1, interactive=True, scale=1 | |
| ) | |
| pause_second_slider = gr.Slider( | |
| minimum=0.1, | |
| maximum=0.5, | |
| step=0.01, | |
| label=i18n("句间停顿秒数"), | |
| value=0.3, | |
| interactive=True, | |
| scale=1, | |
| ) | |
| gr.Markdown(html_center(i18n("GPT采样参数(不懂就用默认):"))) | |
| top_k = gr.Slider(minimum=1, maximum=100, step=1, label=i18n("top_k"), value=15, interactive=True, scale=1) | |
| top_p = gr.Slider(minimum=0, maximum=1, step=0.05, label=i18n("top_p"), value=1, interactive=True, scale=1) | |
| temperature = gr.Slider( | |
| minimum=0, maximum=1, step=0.05, label=i18n("temperature"), value=1, interactive=True, scale=1 | |
| ) | |
| with gr.Row(equal_height=True): | |
| with gr.Column(scale=2): | |
| inference_button = gr.Button(value=i18n("合成语音"), variant="primary", size="lg") | |
| with gr.Column(scale=1): | |
| output = gr.Audio( | |
| label=i18n("输出的语音"), | |
| waveform_options={"show_recording_waveform": False}, | |
| editable=False, | |
| ) | |
| inference_button.click( | |
| get_tts_wav, | |
| [ | |
| inp_ref, | |
| prompt_text, | |
| prompt_language, | |
| text, | |
| text_language, | |
| how_to_cut, | |
| top_k, | |
| top_p, | |
| temperature, | |
| ref_text_free, | |
| speed, | |
| if_freeze, | |
| inp_refs, | |
| sample_steps, | |
| if_sr_Checkbox, | |
| pause_second_slider, | |
| ], | |
| [output], | |
| ) | |
| SoVITS_dropdown.change( | |
| change_sovits_weights, | |
| [SoVITS_dropdown, prompt_language, text_language], | |
| [ | |
| prompt_text, | |
| prompt_language, | |
| text, | |
| text_language, | |
| sample_steps, | |
| inp_refs, | |
| ref_text_free, | |
| if_sr_Checkbox, | |
| inference_button, | |
| ], | |
| ) | |
| GPT_dropdown.change(change_gpt_weights, [GPT_dropdown], []) | |
| if __name__ == "__main__": | |
| app.queue(api_open=False, default_concurrency_limit=1, max_size=1024).launch() | |