import argparse import contextlib import logging import os import re import shutil import traceback import warnings import zipfile from functools import partial from pathlib import Path from time import time as ttime from typing import Any import gradio as gr import librosa import nltk import numpy as np import spaces import torch import torchaudio from huggingface_hub import hf_hub_download from transformers import AutoModelForMaskedLM, AutoTokenizer from config import ( change_choices, get_dtype, get_weights_names, ) from config import ( infer_device as default_device, ) from GPT_SoVITS.Accelerate import PyTorch, T2SEngineProtocol, T2SRequest, backends from GPT_SoVITS.Accelerate.logger import console from GPT_SoVITS.feature_extractor import cnhubert from GPT_SoVITS.module.mel_processing import mel_spectrogram_torch, spectrogram_torch from GPT_SoVITS.module.models import SynthesizerTrn from GPT_SoVITS.process_ckpt import inspect_version from GPT_SoVITS.sv import SV from GPT_SoVITS.text import cleaned_text_to_sequence from GPT_SoVITS.text.cleaner import clean_text from GPT_SoVITS.text.LangSegmenter import LangSegmenter from tools.assets import css, js, top_html from tools.i18n.i18n import I18nAuto, scan_language_list from tools.my_utils import DictToAttrRecursive warnings.filterwarnings( "ignore", message="MPS: The constant padding of more than 3 dimensions is not currently supported natively." ) warnings.filterwarnings("ignore", message=".*ComplexHalf support is experimental.*") logging.getLogger("markdown_it").setLevel(logging.ERROR) logging.getLogger("urllib3").setLevel(logging.ERROR) logging.getLogger("httpcore").setLevel(logging.ERROR) logging.getLogger("httpx").setLevel(logging.ERROR) logging.getLogger("asyncio").setLevel(logging.ERROR) logging.getLogger("charset_normalizer").setLevel(logging.ERROR) logging.getLogger("torchaudio._extension").setLevel(logging.ERROR) logging.getLogger("multipart.multipart").setLevel(logging.ERROR) os.environ["TOKENIZERS_PARALLELISM"] = "false" os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1" nltk.download("averaged_perceptron_tagger_eng") def install(): base = Path("GPT_SoVITS") zip_path = hf_hub_download("XXXXRT/GPT-SoVITS-Pretrained", "pretrained_models.zip", repo_type="model") tmp = base / "tmp_unzip" if tmp.exists(): shutil.rmtree(tmp) with zipfile.ZipFile(zip_path) as zf: zf.extractall(tmp) folder = next(tmp.iterdir()) shutil.move(str(folder), base / folder.name) shutil.rmtree(tmp) install() _LANG_RE = re.compile(r"^[a-z]{2}[_-][A-Z]{2}$") def lang_type(text: str) -> str: if text == "Auto": return text if not _LANG_RE.match(text): raise argparse.ArgumentTypeError(f"Unspported Format: {text}, Expected ll_CC/ll-CC") ll, cc = re.split(r"[_-]", text) language = f"{ll}_{cc}" if language in scan_language_list(): return language else: return "Auto" def build_parser() -> argparse.ArgumentParser: p = argparse.ArgumentParser( prog="inference_webui", description=f"python -s -m GPT_SoVITS.inference_webui zh_CN -b {backends[-1]}", ) p.add_argument( "language", nargs="?", default="Auto", type=lang_type, help="Language Code, Such as zh_CN, en-US", ) p.add_argument( "--backends", "-b", choices=backends, default=backends[-1], help="AR Inference Backend", required=False, ) p.add_argument( "--device", "-d", default=str(default_device), help="Inference Device", required=False, ) p.add_argument( "--port", "-p", default=9872, type=int, help="WebUI Binding Port", required=False, ) p.add_argument( "--share", "-s", default=False, action="store_true", help="Gradio Share Link", required=False, ) p.add_argument( "--cnhubert", default="GPT_SoVITS/pretrained_models/chinese-hubert-base", help="CNHuBERT Pretrain", required=False, ) p.add_argument( "--bert", default="GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large", help="BERT Pretrain", required=False, ) p.add_argument( "--gpt", default="", help="GPT Model", required=False, ) p.add_argument( "--sovits", default="", help="SoVITS Model", required=False, ) return p args = build_parser().parse_args() hps: Any = None vq_model: SynthesizerTrn | None = None t2s_engine: T2SEngineProtocol | None = None version = model_version = "v2" cnhubert_base_path = str(args.cnhubert) bert_path = str(args.bert) infer_ttswebui = int(args.port) is_share = bool(args.share) i18n = I18nAuto(language=args.language) ar_backend: str = args.backends change_choices_i18n = partial(change_choices, i18n=i18n) SoVITS_names, GPT_names = get_weights_names(i18n) dict_language_v1 = { i18n("中文"): "all_zh", # 全部按中文识别 i18n("英文"): "en", # 全部按英文识别 i18n("日文"): "all_ja", # 全部按日文识别 i18n("中英混合"): "zh", # 按中英混合识别 i18n("日英混合"): "ja", # 按日英混合识别 i18n("多语种混合"): "auto", # 多语种启动切分识别语种 } dict_language_v2 = { i18n("中文"): "all_zh", # 全部按中文识别 i18n("英文"): "en", # 全部按英文识别 i18n("日文"): "all_ja", # 全部按日文识别 i18n("粤语"): "all_yue", # 全部按粤语识别 i18n("韩文"): "all_ko", # 全部按韩文识别 i18n("中英混合"): "zh", i18n("日英混合"): "ja", i18n("粤英混合"): "yue", i18n("韩英混合"): "ko", i18n("多语种混合"): "auto", # 多语种启动切分识别语种 i18n("多语种混合(粤语)"): "auto_yue", # 多语种启动切分识别语种 } dict_language = dict_language_v1 if version == "v1" else dict_language_v2 punctuation = set(["!", "?", "…", ",", ".", "-", " "]) splits = {",", "。", "?", "!", ",", ".", "?", "!", "~", ":", ":", "—", "…"} v3v4set = {"v3", "v4"} infer_device = torch.device(args.device) device = infer_device if infer_device.type == "cuda" else torch.device("cpu") dtype = get_dtype(device.index) is_half = dtype == torch.float16 tokenizer = AutoTokenizer.from_pretrained(bert_path) bert_model = AutoModelForMaskedLM.from_pretrained(bert_path).to(infer_device, dtype) cnhubert.cnhubert_base_path = cnhubert_base_path ssl_model = cnhubert.get_model().to(infer_device, dtype) spec_min = -12 spec_max = 2 def norm_spec(x): return (x - spec_min) / (spec_max - spec_min) * 2 - 1 def denorm_spec(x): return (x + 1) / 2 * (spec_max - spec_min) + spec_min def mel_fn(x): return mel_spectrogram_torch( y=x, n_fft=1024, num_mels=100, sampling_rate=24000, hop_size=256, win_size=1024, fmin=0, fmax=None, center=False, ) def mel_fn_v4(x): return mel_spectrogram_torch( y=x, n_fft=1280, num_mels=100, sampling_rate=32000, hop_size=320, win_size=1280, fmin=0, fmax=None, center=False, ) gpt_path = str(args.gpt) or GPT_names[0][-1] sovits_path = str(args.sovits) or SoVITS_names[0][-1] def get_bert_feature(text, word2ph): inputs = tokenizer(text, return_tensors="pt") for i in inputs: inputs[i] = inputs[i].to(infer_device) res = bert_model(**inputs, output_hidden_states=True) res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()[1:-1] assert len(word2ph) == len(text) phone_level_feature = [] for i in range(len(word2ph)): repeat_feature = res[i].repeat(word2ph[i], 1) phone_level_feature.append(repeat_feature) phone_level_feature_t = torch.cat(phone_level_feature, dim=0) return phone_level_feature_t.T def change_sovits_weights(sovits_path, prompt_language=None, text_language=None): global vq_model, hps, version, model_version, dict_language model_version, version, is_lora, hps, dict_s2 = inspect_version(sovits_path) print(sovits_path, version, model_version, is_lora) dict_language = dict_language_v1 if version == "v1" else dict_language_v2 visible_sample_steps = visible_inp_refs = None if prompt_language is not None and text_language is not None: if prompt_language in list(dict_language.keys()): prompt_text_update, prompt_language_update = gr.skip(), gr.update(choices=list(dict_language.keys())) else: prompt_text_update = gr.update(value="") prompt_language_update = gr.update(value=i18n("中文"), choices=list(dict_language.keys())) if text_language in list(dict_language.keys()): text_update, text_language_update = gr.skip(), gr.skip() else: text_update = gr.update(value="") text_language_update = gr.update(value=i18n("中文"), choices=list(dict_language.keys())) if model_version in v3v4set: visible_sample_steps = True visible_inp_refs = False else: visible_sample_steps = False visible_inp_refs = True yield ( prompt_text_update, prompt_language_update, text_update, text_language_update, gr.update( visible=visible_sample_steps, value=32 if model_version == "v3" else 8, choices=[4, 8, 16, 32, 64, 128] if model_version == "v3" else [4, 8, 16, 32], ), gr.update(visible=visible_inp_refs), gr.update(value=False, interactive=True if model_version not in v3v4set else False), gr.update(visible=True if model_version == "v3" else False), gr.update(value=i18n("模型加载中,请等待"), interactive=False), ) hps = DictToAttrRecursive(hps) hps.model.semantic_frame_rate = "25hz" hps.model.version = model_version if model_version not in v3v4set: vq_model = SynthesizerTrn( hps.data.filter_length // 2 + 1, hps.train.segment_size // hps.data.hop_length, n_speakers=hps.data.n_speakers, **hps.model, ) else: raise RuntimeError("Unsupported model version") if "pretrained" not in sovits_path: if hasattr(vq_model, "enc_q"): del vq_model.enc_q if is_lora is False: console.print(f">> loading sovits_{model_version}", vq_model.load_state_dict(dict_s2["weight"], strict=False)) else: RuntimeError("Unsupported model version") vq_model = vq_model.to(infer_device, dtype) yield ( gr.skip(), gr.skip(), gr.skip(), gr.skip(), gr.skip(), gr.skip(), gr.skip(), gr.skip(), gr.update(value=i18n("合成语音"), interactive=True), ) with contextlib.suppress(UnboundLocalError): next(change_sovits_weights(sovits_path)) def change_gpt_weights(gpt_path): global t2s_engine, config t2s_engine = PyTorch.T2SEngineTorch( PyTorch.T2SEngineTorch.load_decoder(Path(gpt_path), backend=ar_backend), device, dtype=dtype, ) # t2s_engine.decoder_model.compile() total = sum(p.numel() for p in t2s_engine.decoder_model.parameters()) console.print(">> Number of parameter: %.2fM" % (total / 1e6)) change_gpt_weights(gpt_path) sv_cn_model = SV(infer_device, is_half) resample_transform_dict = {} def resample(audio_tensor, sr0, sr1, device): global resample_transform_dict key = f"{sr0}-{sr1}-{device}" if key not in resample_transform_dict: resample_transform_dict[key] = torchaudio.transforms.Resample(sr0, sr1).to(device) return resample_transform_dict[key](audio_tensor) def get_spepc(hps, filename, dtype, device, is_v2pro=False): sr1 = int(hps.data.sampling_rate) audio, sr0 = torchaudio.load_with_torchcodec(filename) audio = audio.to(device) if sr0 != sr1: audio = resample(audio, sr0, sr1, device) if audio.shape[0] > 1: audio = audio.mean(0).unsqueeze(0) maxx = float(audio.abs().max()) if maxx > 1: audio /= min(2, maxx) spec = spectrogram_torch( audio, hps.data.filter_length, hps.data.sampling_rate, hps.data.hop_length, hps.data.win_length, center=False, ) spec = spec.to(dtype) if is_v2pro is True: audio = resample(audio, sr1, 16000, device).to(dtype) return spec, audio def clean_text_inf(text, language, version): language = language.replace("all_", "") phones, word2ph, norm_text = clean_text(text, language, version) phones = cleaned_text_to_sequence(phones, version) return phones, word2ph, norm_text def get_bert_inf(phones, word2ph, norm_text, language): language = language.replace("all_", "") if language == "zh": bert = get_bert_feature(norm_text, word2ph).to(device) # .to(dtype) else: bert = torch.zeros( (1024, len(phones)), dtype=torch.float16 if is_half is True else torch.float32, ).to(device) return bert def get_first(text): pattern = "[" + "".join(re.escape(sep) for sep in splits) + "]" text = re.split(pattern, text)[0].strip() return text def get_phones_and_bert(text, language, version, final=False): text = re.sub(r" {2,}", " ", text) textlist = [] langlist = [] if language == "all_zh": for tmp in LangSegmenter.getTexts(text, "zh"): langlist.append(tmp["lang"]) textlist.append(tmp["text"]) elif language == "all_yue": for tmp in LangSegmenter.getTexts(text, "zh"): if tmp["lang"] == "zh": tmp["lang"] = "yue" langlist.append(tmp["lang"]) textlist.append(tmp["text"]) elif language == "all_ja": for tmp in LangSegmenter.getTexts(text, "ja"): langlist.append(tmp["lang"]) textlist.append(tmp["text"]) elif language == "all_ko": for tmp in LangSegmenter.getTexts(text, "ko"): langlist.append(tmp["lang"]) textlist.append(tmp["text"]) elif language == "en": langlist.append("en") textlist.append(text) elif language == "auto": for tmp in LangSegmenter.getTexts(text): langlist.append(tmp["lang"]) textlist.append(tmp["text"]) elif language == "auto_yue": for tmp in LangSegmenter.getTexts(text): if tmp["lang"] == "zh": tmp["lang"] = "yue" langlist.append(tmp["lang"]) textlist.append(tmp["text"]) else: for tmp in LangSegmenter.getTexts(text): if langlist: if (tmp["lang"] == "en" and langlist[-1] == "en") or (tmp["lang"] != "en" and langlist[-1] != "en"): textlist[-1] += tmp["text"] continue if tmp["lang"] == "en": langlist.append(tmp["lang"]) else: # 因无法区别中日韩文汉字,以用户输入为准 langlist.append(language) textlist.append(tmp["text"]) print(textlist) print(langlist) phones_list = [] bert_list = [] norm_text_list = [] for i in range(len(textlist)): lang = langlist[i] phones, word2ph, norm_text = clean_text_inf(textlist[i], lang, version) bert = get_bert_inf(phones, word2ph, norm_text, lang) phones_list.append(phones) norm_text_list.append(norm_text) bert_list.append(bert) bert = torch.cat(bert_list, dim=1) phones = sum(phones_list, []) norm_text = "".join(norm_text_list) if not final and len(phones) < 6: return get_phones_and_bert("." + text, language, version, final=True) return phones, bert.to(dtype), norm_text def merge_short_text_in_array(texts, threshold): if (len(texts)) < 2: return texts result = [] text = "" for ele in texts: text += ele if len(text) >= threshold: result.append(text) text = "" if len(text) > 0: if len(result) == 0: result.append(text) else: result[len(result) - 1] += text return result sr_model = None cache: dict[int, Any] = {} @spaces.GPU def get_tts_wav( ref_wav_path, prompt_text, prompt_language, text, text_language, how_to_cut=i18n("不切"), top_k=20, top_p=0.6, temperature=0.6, ref_free=False, speed=1, if_freeze=False, inp_refs=None, sample_steps=8, if_sr=False, pause_second=0.3, ): torch.set_grad_enabled(False) ttfb_time = ttime() if ref_wav_path: pass else: gr.Warning(i18n("请上传参考音频")) if text: pass else: gr.Warning(i18n("请填入推理文本")) t = [] if prompt_text is None or len(prompt_text) == 0: ref_free = True if model_version in v3v4set: ref_free = False # s2v3暂不支持ref_free t0 = ttime() prompt_language = dict_language[prompt_language] text_language = dict_language[text_language] if not ref_free: prompt_text = prompt_text.strip("\n") if prompt_text[-1] not in splits: prompt_text += "。" if prompt_language != "en" else "." print(">>", i18n("实际输入的参考文本:"), prompt_text) text = text.strip("\n") # if (text[0] not in splits and len(get_first(text)) < 4): text = "。" + text if text_language != "en" else "." + text print(">>", i18n("实际输入的目标文本:"), text) zero_wav = np.zeros( int(hps.data.sampling_rate * pause_second), dtype=np.float16 if is_half is True else np.float32, ) zero_wav_torch = torch.from_numpy(zero_wav) if is_half is True: zero_wav_torch = zero_wav_torch.half().to(infer_device) else: zero_wav_torch = zero_wav_torch.to(infer_device) if not ref_free: assert vq_model wav16k, sr = librosa.load(ref_wav_path, sr=16000) if wav16k.shape[0] > 160000 or wav16k.shape[0] < 48000: gr.Warning(i18n("参考音频在3~10秒范围外,请更换!")) raise OSError(i18n("参考音频在3~10秒范围外,请更换!")) wav16k_t = torch.from_numpy(wav16k) if is_half is True: wav16k_t = wav16k_t.half().to(infer_device) else: wav16k_t = wav16k_t.to(infer_device) wav16k_t = torch.cat([wav16k_t, zero_wav_torch]) ssl_content = ssl_model.model(wav16k_t.unsqueeze(0))["last_hidden_state"].transpose(1, 2) # .float() codes = vq_model.extract_latent(ssl_content) prompt_semantic = codes[0, 0] prompt = prompt_semantic.unsqueeze(0).to(device) else: prompt = torch.zeros((1, 0)).to(device, torch.int32) t1 = ttime() t.append(t1 - t0) if how_to_cut == i18n("凑四句一切"): text = cut1(text) elif how_to_cut == i18n("凑50字一切"): text = cut2(text) elif how_to_cut == i18n("按中文句号。切"): text = cut3(text) elif how_to_cut == i18n("按英文句号.切"): text = cut4(text) elif how_to_cut == i18n("按标点符号切"): text = cut5(text) while "\n\n" in text: text = text.replace("\n\n", "\n") texts = text.split("\n") texts = process_text(texts) texts = merge_short_text_in_array(texts, 5) audio_opt = [] # s2v3暂不支持ref_free if not ref_free: phones1, bert1, _ = get_phones_and_bert(prompt_text, prompt_language, version) else: phones1, bert1 = [], torch.zeros(1024, 0).to(device, dtype) infer_len: list[int] = [] infer_time: list[float] = [] assert vq_model for i_text, text in enumerate(texts): # 解决输入目标文本的空行导致报错的问题 if len(text.strip()) == 0: continue if text[-1] not in splits: text += "。" if text_language != "en" else "." print(">>", i18n("实际输入的目标文本(每句):"), text) phones2, bert2, norm_text2 = get_phones_and_bert(text, text_language, version) print(">>", i18n("前端处理后的文本(每句):"), norm_text2) bert = torch.cat([bert1, bert2], 1) all_phoneme_ids = torch.LongTensor(phones1 + phones2).to(device).unsqueeze(0) bert = bert.to(device).unsqueeze(0) all_phoneme_len = torch.tensor([all_phoneme_ids.shape[-1]]).to(device) t2 = ttime() if i_text in cache and if_freeze is True: pred_semantic = cache[i_text] else: t2s_request = T2SRequest( [all_phoneme_ids.squeeze(0)], all_phoneme_len, prompt, [bert.squeeze(0)], valid_length=1, top_k=top_k, top_p=top_p, temperature=temperature, early_stop_num=1500, use_cuda_graph=torch.cuda.is_available(), # debug=True, ) assert t2s_engine t2s_result = t2s_engine.generate(t2s_request) if t2s_result.exception is not None: console.print(t2s_result.traceback) raise RuntimeError() pred_semantic_list = t2s_result.result assert pred_semantic_list, t2s_result.traceback pred_semantic = pred_semantic_list[0].unsqueeze(0).to(infer_device) infer_len.append(pred_semantic.shape[-1]) infer_time.append(t2s_result.infer_speed[-1]) cache[i_text] = pred_semantic t3 = ttime() is_v2pro = model_version in {"v2Pro", "v2ProPlus"} sv_emb: list[torch.Tensor] = [] if model_version not in v3v4set: refers = [] if inp_refs: for path in inp_refs: try: # 这里加上提取sv的逻辑,要么一堆sv一堆refer,要么单个sv单个refer refer, audio_tensor = get_spepc(hps, path.name, dtype, infer_device, is_v2pro) refers.append(refer) if is_v2pro: assert sv_cn_model sv_emb.append(sv_cn_model.compute_embedding(audio_tensor)) except Exception as e: print(e) traceback.print_exc() if len(refers) == 0: refers, audio_tensor = get_spepc(hps, ref_wav_path, dtype, infer_device, is_v2pro) refers = [refers] if is_v2pro: assert sv_cn_model sv_emb = [sv_cn_model.compute_embedding(audio_tensor)] if is_v2pro: audio = vq_model.decode( pred_semantic, torch.LongTensor(phones2).to(infer_device).unsqueeze(0), refers, speed=speed, sv_emb=sv_emb, )[0][0] # type: ignore else: audio = vq_model.decode( pred_semantic, torch.LongTensor(phones2).to(infer_device).unsqueeze(0), refers, speed=speed, )[0][0] # type: ignore else: raise RuntimeError("Unsupported model version") if i_text == 0: ttfb_time = ttime() - ttfb_time max_audio = torch.abs(audio).max() # 简单防止16bit爆音 if max_audio > 1: audio = audio / max_audio audio_opt.append(audio) audio_opt.append(zero_wav_torch) # zero_wav t4 = ttime() t.extend([t2 - t1, t3 - t2, t4 - t3]) t1 = ttime() audio_opt_t = torch.cat(audio_opt, 0) # np.concatenate opt_sr = 32000 audio_opt_n = audio_opt_t.cpu().numpy() t0 = t[0] t1 = sum(t[1::3]) t2 = sum(t[2::3]) t3 = sum(t[3::3]) infer_speed_avg = sum(infer_len) / sum(infer_time) rtf_value = sum(t) / (audio_opt_n.__len__() / opt_sr) console.print(f">> Time Stamps: {t0:.3f}\t{t1:.3f}\t{t2:.3f}\t{t3:.3f}") console.print(f">> Infer Speed: {infer_speed_avg:.2f} Token/s") console.print(f">> RTF: {rtf_value:.2f}") if ttfb_time > 2: console.print(f">> TTFB: {ttfb_time:.3f} s") else: console.print(f">> TTFB: {ttfb_time * 1000:.3f} ms") gr.Info(f"{infer_speed_avg:.2f} Token/s", title="Infer Speed") gr.Info(f"{rtf_value:.2f}", title="RTF") if ttfb_time > 2: gr.Info(f">> TTFB: {ttfb_time:.3f} s") else: gr.Info(f">> TTFB: {ttfb_time * 1000:.3f} ms") if torch.cuda.is_available(): torch.cuda.empty_cache() yield opt_sr, (audio_opt_n * 32767).astype(np.int16) def split(todo_text): todo_text = todo_text.replace("……", "。").replace("——", ",") if todo_text[-1] not in splits: todo_text += "。" i_split_head = i_split_tail = 0 len_text = len(todo_text) todo_texts = [] while 1: if i_split_head >= len_text: break # 结尾一定有标点,所以直接跳出即可,最后一段在上次已加入 if todo_text[i_split_head] in splits: i_split_head += 1 todo_texts.append(todo_text[i_split_tail:i_split_head]) i_split_tail = i_split_head else: i_split_head += 1 return todo_texts def cut1(inp): inp = inp.strip("\n") inps = split(inp) split_idx: list[int | None] = list(range(0, len(inps) + 1, 4)) split_idx[-1] = None if len(split_idx) > 1: opts = [] for idx in range(len(split_idx) - 1): opts.append("".join(inps[split_idx[idx] : split_idx[idx + 1]])) else: opts = [inp] opts = [item for item in opts if not set(item).issubset(punctuation)] return "\n".join(opts) def cut2(inp): inp = inp.strip("\n") inps = split(inp) if len(inps) < 2: return inp opts = [] summ = 0 tmp_str = "" for i in range(len(inps)): summ += len(inps[i]) tmp_str += inps[i] if summ > 50: summ = 0 opts.append(tmp_str) tmp_str = "" if tmp_str != "": opts.append(tmp_str) if len(opts) > 1 and len(opts[-1]) < 50: # 如果最后一个太短了,和前一个合一起 opts[-2] = opts[-2] + opts[-1] opts = opts[:-1] opts = [item for item in opts if not set(item).issubset(punctuation)] return "\n".join(opts) def cut3(inp): inp = inp.strip("\n") opts = inp.strip("。").split("。") opts = [item for item in opts if not set(item).issubset(punctuation)] return "\n".join(opts) def cut4(inp): inp = inp.strip("\n") opts = re.split(r"(? 0 and i < len(inp) - 1 and inp[i - 1].isdigit() and inp[i + 1].isdigit(): items.append(char) else: items.append(char) mergeitems.append("".join(items)) items = [] else: items.append(char) if items: mergeitems.append("".join(items)) opt = [item for item in mergeitems if not set(item).issubset(punds)] return "\n".join(opt) def process_text(texts): _text = [] if all(text in [None, " ", "\n", ""] for text in texts): raise ValueError(i18n("请输入有效文本")) for text in texts: if text in [None, " ", ""]: pass else: _text.append(text) return _text def html_center(text, label="p"): return f"""