Spaces:
Runtime error
Runtime error
| import streamlit as st | |
| import requests | |
| import os | |
| # Hugging Face API setup | |
| API_URL = "https://api-inference.huggingface.co/models/MIT/ast-finetuned-audioset-10-10-0.4593" | |
| HF_TOKEN = os.getenv("HF_TOKEN") | |
| headers = {"Authorization": f"Bearer {HF_TOKEN}"} | |
| # Function to send the audio file to the Hugging Face API and get the classification result | |
| def classify_audio(audio_file_path): | |
| with open(audio_file_path, "rb") as audio_file: | |
| response = requests.post( | |
| "https://api-inference.huggingface.co/models/MIT/ast-finetuned-audioset-10-10-0.4593", | |
| headers=headers, | |
| files={"file": audio_file} | |
| ) | |
| return response.json() | |
| # Streamlit interface | |
| st.title("Audio Classifier") | |
| # Define the folder where your audio files are located | |
| audio_folder = "audio_files" | |
| # List the audio files in the folder | |
| audio_files = os.listdir(audio_folder) | |
| audio_file_options = [f for f in audio_files if f.endswith(('.mp3', '.wav'))] | |
| # Dropdown to select an audio file | |
| selected_file = st.selectbox("Select an audio file:", audio_file_options) | |
| import transformers | |
| import tensorflow as tf | |
| st.write(f"Streamlit version: {st.__version__}") | |
| st.write(f"Transformers version: {transformers.__version__}") | |
| st.write(f"TensorFlow version: {tf.__version__}") | |
| # Button to classify the selected audio file | |
| if st.button("Classify"): | |
| # Get the full path of the selected audio file | |
| audio_file_path = os.path.join(audio_folder, selected_file) | |
| # Show the audio player | |
| st.audio(audio_file_path) | |
| # Get and display the classification results | |
| results = classify_audio(audio_file_path) | |
| st.write("Results:") | |
| for result in results: | |
| st.write(f"Label: {result['label']}, Confidence: {result['score']:.2f}") | |