Spaces:
Running
Running
supporting presets
Browse files
app.py
CHANGED
|
@@ -6,57 +6,56 @@ import matplotlib.pyplot as plt
|
|
| 6 |
import numpy as np
|
| 7 |
import torch
|
| 8 |
|
| 9 |
-
from scorer import build_model
|
| 10 |
|
| 11 |
|
| 12 |
@cache
|
| 13 |
-
def load_model(device):
|
| 14 |
-
return build_model(device
|
| 15 |
|
| 16 |
@cache
|
| 17 |
-
def load_reference_scores(
|
| 18 |
-
with np.load(f"{
|
| 19 |
ref_nll = f["arr_0"]
|
| 20 |
return ref_nll
|
| 21 |
|
| 22 |
-
def compute_gmm_likelihood(x_score,
|
| 23 |
-
with open(f"{
|
| 24 |
clf = load(f)
|
| 25 |
nll = -clf.score(x_score)
|
| 26 |
|
| 27 |
-
ref_nll = load_reference_scores(
|
| 28 |
percentile = (ref_nll < nll).mean() * 100
|
| 29 |
|
| 30 |
-
return nll, percentile
|
| 31 |
|
| 32 |
-
def plot_against_reference(nll):
|
| 33 |
-
ref_nll = load_reference_scores()
|
| 34 |
-
print(ref_nll.shape)
|
| 35 |
fig, ax = plt.subplots()
|
| 36 |
-
ax.hist(ref_nll)
|
| 37 |
ax.axvline(nll, label='Image Score', c='red', ls="--")
|
| 38 |
plt.legend()
|
| 39 |
fig.tight_layout()
|
| 40 |
return fig
|
| 41 |
|
| 42 |
-
|
|
|
|
| 43 |
img = torch.from_numpy(img).permute(2,0,1).unsqueeze(0)
|
| 44 |
img = torch.nn.functional.interpolate(img, size=64, mode='bilinear')
|
| 45 |
-
model = load_model(device=device)
|
| 46 |
x = model(img.cuda())
|
| 47 |
x = x.square().sum(dim=(2, 3, 4)) ** 0.5
|
| 48 |
-
nll, pct = compute_gmm_likelihood(x.cpu())
|
|
|
|
|
|
|
| 49 |
|
| 50 |
-
|
| 51 |
-
print(plot)
|
| 52 |
-
outstr = f"Anomaly score: {nll:.3f} -> {pct:.2f} percentile"
|
| 53 |
return outstr, plot
|
| 54 |
|
| 55 |
|
| 56 |
demo = gr.Interface(
|
| 57 |
fn=run_inference,
|
| 58 |
inputs=["image"],
|
| 59 |
-
outputs=["text", gr.Plot()],
|
| 60 |
)
|
| 61 |
|
| 62 |
if __name__ == "__main__":
|
|
|
|
| 6 |
import numpy as np
|
| 7 |
import torch
|
| 8 |
|
| 9 |
+
from scorer import build_model, config_presets
|
| 10 |
|
| 11 |
|
| 12 |
@cache
|
| 13 |
+
def load_model(preset="edm2-img64-s-fid", device='cpu'):
|
| 14 |
+
return build_model(preset, device)
|
| 15 |
|
| 16 |
@cache
|
| 17 |
+
def load_reference_scores(model_dir):
|
| 18 |
+
with np.load(f"{model_dir}/refscores.npz", "rb") as f:
|
| 19 |
ref_nll = f["arr_0"]
|
| 20 |
return ref_nll
|
| 21 |
|
| 22 |
+
def compute_gmm_likelihood(x_score, model_dir):
|
| 23 |
+
with open(f"{model_dir}/gmm.pkl", "rb") as f:
|
| 24 |
clf = load(f)
|
| 25 |
nll = -clf.score(x_score)
|
| 26 |
|
| 27 |
+
ref_nll = load_reference_scores(model_dir)
|
| 28 |
percentile = (ref_nll < nll).mean() * 100
|
| 29 |
|
| 30 |
+
return nll, percentile, ref_nll
|
| 31 |
|
| 32 |
+
def plot_against_reference(nll, ref_nll):
|
|
|
|
|
|
|
| 33 |
fig, ax = plt.subplots()
|
| 34 |
+
ax.hist(ref_nll, label="Reference Scores")
|
| 35 |
ax.axvline(nll, label='Image Score', c='red', ls="--")
|
| 36 |
plt.legend()
|
| 37 |
fig.tight_layout()
|
| 38 |
return fig
|
| 39 |
|
| 40 |
+
|
| 41 |
+
def run_inference(img, preset="edm2-img64-s-fid", device="cuda"):
|
| 42 |
img = torch.from_numpy(img).permute(2,0,1).unsqueeze(0)
|
| 43 |
img = torch.nn.functional.interpolate(img, size=64, mode='bilinear')
|
| 44 |
+
model = load_model(preset=preset, device=device)
|
| 45 |
x = model(img.cuda())
|
| 46 |
x = x.square().sum(dim=(2, 3, 4)) ** 0.5
|
| 47 |
+
nll, pct, ref_nll = compute_gmm_likelihood(x.cpu(), model_dir=f"models/{preset}")
|
| 48 |
+
|
| 49 |
+
plot = plot_against_reference(nll, ref_nll)
|
| 50 |
|
| 51 |
+
outstr = f"Anomaly score: {nll:.3f} / {pct:.2f} percentile"
|
|
|
|
|
|
|
| 52 |
return outstr, plot
|
| 53 |
|
| 54 |
|
| 55 |
demo = gr.Interface(
|
| 56 |
fn=run_inference,
|
| 57 |
inputs=["image"],
|
| 58 |
+
outputs=["text", gr.Plot(label="Comparing to Imagenette")],
|
| 59 |
)
|
| 60 |
|
| 61 |
if __name__ == "__main__":
|
scorer.py
CHANGED
|
@@ -6,12 +6,21 @@ import numpy as np
|
|
| 6 |
import PIL.Image
|
| 7 |
import torch
|
| 8 |
from sklearn.mixture import GaussianMixture
|
|
|
|
| 9 |
from sklearn.pipeline import Pipeline
|
| 10 |
from sklearn.preprocessing import StandardScaler
|
| 11 |
from tqdm import tqdm
|
| 12 |
|
| 13 |
import dnnlib
|
| 14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
class EDMScorer(torch.nn.Module):
|
| 17 |
def __init__(
|
|
@@ -34,17 +43,17 @@ class EDMScorer(torch.nn.Module):
|
|
| 34 |
self.net = net.eval()
|
| 35 |
|
| 36 |
# Adjust noise levels based on how far we want to accumulate
|
| 37 |
-
self.sigma_min =
|
| 38 |
self.sigma_max = sigma_max * stop_ratio
|
| 39 |
|
| 40 |
step_indices = torch.arange(num_steps, dtype=torch.float64, device=device)
|
| 41 |
t_steps = (
|
| 42 |
-
sigma_max ** (1 / rho)
|
| 43 |
+ step_indices
|
| 44 |
/ (num_steps - 1)
|
| 45 |
-
* (sigma_min ** (1 / rho) - sigma_max ** (1 / rho))
|
| 46 |
) ** rho
|
| 47 |
-
print("Using steps:", t_steps)
|
| 48 |
|
| 49 |
self.register_buffer("sigma_steps", t_steps.to(torch.float64))
|
| 50 |
|
|
@@ -61,18 +70,14 @@ class EDMScorer(torch.nn.Module):
|
|
| 61 |
xhat = self.net(x, sigma, force_fp32=force_fp32)
|
| 62 |
c_skip = self.net.sigma_data**2 / (sigma**2 + self.net.sigma_data**2)
|
| 63 |
score = xhat - (c_skip * x)
|
| 64 |
-
|
| 65 |
-
# score_norms = score.mean(1)
|
| 66 |
-
# score_norms = score.square().sum(dim=(1, 2, 3)) ** 0.5
|
| 67 |
batch_scores.append(score)
|
| 68 |
batch_scores = torch.stack(batch_scores, axis=1)
|
| 69 |
|
| 70 |
return batch_scores
|
| 71 |
|
| 72 |
|
| 73 |
-
def build_model(
|
| 74 |
-
|
| 75 |
-
netpath = f"{model_root}/{netpath}"
|
| 76 |
with dnnlib.util.open_url(netpath, verbose=1) as f:
|
| 77 |
data = pickle.load(f)
|
| 78 |
net = data["ema"]
|
|
@@ -80,14 +85,43 @@ def build_model(netpath=f"edm2-img64-s-1073741-0.075.pkl", device="cpu"):
|
|
| 80 |
return model
|
| 81 |
|
| 82 |
|
| 83 |
-
def train_gmm(score_path, outdir
|
|
|
|
|
|
|
|
|
|
| 84 |
X = torch.load(score_path)
|
| 85 |
|
| 86 |
-
gm = GaussianMixture(
|
| 87 |
clf = Pipeline([("scaler", StandardScaler()), ("GMM", gm)])
|
| 88 |
clf.fit(X)
|
| 89 |
inlier_nll = -clf.score_samples(X)
|
| 90 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
with open(f"{outdir}/refscores.npz", "wb") as f:
|
| 92 |
np.savez_compressed(f, inlier_nll)
|
| 93 |
|
|
@@ -108,6 +142,7 @@ def compute_gmm_likelihood(x_score, gmmdir):
|
|
| 108 |
|
| 109 |
|
| 110 |
def test_runner(device="cpu"):
|
|
|
|
| 111 |
f = "goldfish.JPEG"
|
| 112 |
image = (PIL.Image.open(f)).resize((64, 64), PIL.Image.Resampling.LANCZOS)
|
| 113 |
image = np.array(image)
|
|
@@ -118,7 +153,7 @@ def test_runner(device="cpu"):
|
|
| 118 |
return scores
|
| 119 |
|
| 120 |
|
| 121 |
-
def runner(dataset_path, device="cpu"):
|
| 122 |
dsobj = ImageFolderDataset(path=dataset_path, resolution=64)
|
| 123 |
refimg, reflabel = dsobj[0]
|
| 124 |
print(refimg.shape, refimg.dtype, reflabel)
|
|
@@ -126,7 +161,7 @@ def runner(dataset_path, device="cpu"):
|
|
| 126 |
dsobj, batch_size=48, num_workers=4, prefetch_factor=2
|
| 127 |
)
|
| 128 |
|
| 129 |
-
model = build_model(device=device)
|
| 130 |
score_norms = []
|
| 131 |
|
| 132 |
for x, _ in tqdm(dsloader):
|
|
@@ -137,17 +172,25 @@ def runner(dataset_path, device="cpu"):
|
|
| 137 |
score_norms = torch.cat(score_norms, dim=0)
|
| 138 |
|
| 139 |
os.makedirs("out/msma", exist_ok=True)
|
| 140 |
-
with open("out/msma/
|
| 141 |
torch.save(score_norms, f)
|
| 142 |
|
| 143 |
print(f"Computed score norms for {score_norms.shape[0]} samples")
|
| 144 |
|
| 145 |
|
| 146 |
if __name__ == "__main__":
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 150 |
s = s.square().sum(dim=(2, 3, 4)) ** 0.5
|
| 151 |
s = s.to("cpu").numpy()
|
| 152 |
-
nll, pct = compute_gmm_likelihood(s, gmmdir="out/msma/")
|
| 153 |
print(f"Anomaly score for image: {nll[0]:.3f} @ {pct*100:.2f} percentile")
|
|
|
|
| 6 |
import PIL.Image
|
| 7 |
import torch
|
| 8 |
from sklearn.mixture import GaussianMixture
|
| 9 |
+
from sklearn.model_selection import GridSearchCV
|
| 10 |
from sklearn.pipeline import Pipeline
|
| 11 |
from sklearn.preprocessing import StandardScaler
|
| 12 |
from tqdm import tqdm
|
| 13 |
|
| 14 |
import dnnlib
|
| 15 |
|
| 16 |
+
model_root = "https://nvlabs-fi-cdn.nvidia.com/edm2/posthoc-reconstructions"
|
| 17 |
+
|
| 18 |
+
config_presets = {
|
| 19 |
+
"edm2-img64-s-fid": f"{model_root}/edm2-img64-s-1073741-0.075.pkl", # fid = 1.58
|
| 20 |
+
"edm2-img64-m-fid": f"{model_root}/edm2-img64-m-2147483-0.060.pkl", # fid = 1.43
|
| 21 |
+
"edm2-img64-l-fid": f"{model_root}/edm2-img64-l-1073741-0.040.pkl", # fid = 1.33
|
| 22 |
+
}
|
| 23 |
+
|
| 24 |
|
| 25 |
class EDMScorer(torch.nn.Module):
|
| 26 |
def __init__(
|
|
|
|
| 43 |
self.net = net.eval()
|
| 44 |
|
| 45 |
# Adjust noise levels based on how far we want to accumulate
|
| 46 |
+
self.sigma_min = 1e-1
|
| 47 |
self.sigma_max = sigma_max * stop_ratio
|
| 48 |
|
| 49 |
step_indices = torch.arange(num_steps, dtype=torch.float64, device=device)
|
| 50 |
t_steps = (
|
| 51 |
+
self.sigma_max ** (1 / rho)
|
| 52 |
+ step_indices
|
| 53 |
/ (num_steps - 1)
|
| 54 |
+
* (self.sigma_min ** (1 / rho) - self.sigma_max ** (1 / rho))
|
| 55 |
) ** rho
|
| 56 |
+
# print("Using steps:", t_steps)
|
| 57 |
|
| 58 |
self.register_buffer("sigma_steps", t_steps.to(torch.float64))
|
| 59 |
|
|
|
|
| 70 |
xhat = self.net(x, sigma, force_fp32=force_fp32)
|
| 71 |
c_skip = self.net.sigma_data**2 / (sigma**2 + self.net.sigma_data**2)
|
| 72 |
score = xhat - (c_skip * x)
|
|
|
|
|
|
|
|
|
|
| 73 |
batch_scores.append(score)
|
| 74 |
batch_scores = torch.stack(batch_scores, axis=1)
|
| 75 |
|
| 76 |
return batch_scores
|
| 77 |
|
| 78 |
|
| 79 |
+
def build_model(preset="edm2-img64-s-fid", device="cpu"):
|
| 80 |
+
netpath = config_presets[preset]
|
|
|
|
| 81 |
with dnnlib.util.open_url(netpath, verbose=1) as f:
|
| 82 |
data = pickle.load(f)
|
| 83 |
net = data["ema"]
|
|
|
|
| 85 |
return model
|
| 86 |
|
| 87 |
|
| 88 |
+
def train_gmm(score_path, outdir):
|
| 89 |
+
def quantile_scorer(gmm, X, y=None):
|
| 90 |
+
return np.quantile(gmm.score_samples(X), 0.1)
|
| 91 |
+
|
| 92 |
X = torch.load(score_path)
|
| 93 |
|
| 94 |
+
gm = GaussianMixture(init_params="kmeans", covariance_type="full", max_iter=100000)
|
| 95 |
clf = Pipeline([("scaler", StandardScaler()), ("GMM", gm)])
|
| 96 |
clf.fit(X)
|
| 97 |
inlier_nll = -clf.score_samples(X)
|
| 98 |
|
| 99 |
+
param_grid = dict(
|
| 100 |
+
GMM__n_components=range(2, 11, 2),
|
| 101 |
+
)
|
| 102 |
+
|
| 103 |
+
grid = GridSearchCV(
|
| 104 |
+
estimator=clf,
|
| 105 |
+
param_grid=param_grid,
|
| 106 |
+
cv=10,
|
| 107 |
+
n_jobs=2,
|
| 108 |
+
verbose=1,
|
| 109 |
+
scoring=quantile_scorer,
|
| 110 |
+
)
|
| 111 |
+
|
| 112 |
+
grid_result = grid.fit(X)
|
| 113 |
+
|
| 114 |
+
print("Best: %f using %s" % (grid_result.best_score_, grid_result.best_params_))
|
| 115 |
+
print("-----" * 15)
|
| 116 |
+
means = grid_result.cv_results_["mean_test_score"]
|
| 117 |
+
stds = grid_result.cv_results_["std_test_score"]
|
| 118 |
+
params = grid_result.cv_results_["params"]
|
| 119 |
+
for mean, stdev, param in zip(means, stds, params):
|
| 120 |
+
print("%f (%f) with: %r" % (mean, stdev, param))
|
| 121 |
+
|
| 122 |
+
clf = grid.best_estimator_
|
| 123 |
+
|
| 124 |
+
os.makedirs(outdir, exist_ok=True)
|
| 125 |
with open(f"{outdir}/refscores.npz", "wb") as f:
|
| 126 |
np.savez_compressed(f, inlier_nll)
|
| 127 |
|
|
|
|
| 142 |
|
| 143 |
|
| 144 |
def test_runner(device="cpu"):
|
| 145 |
+
# f = "doge.jpg"
|
| 146 |
f = "goldfish.JPEG"
|
| 147 |
image = (PIL.Image.open(f)).resize((64, 64), PIL.Image.Resampling.LANCZOS)
|
| 148 |
image = np.array(image)
|
|
|
|
| 153 |
return scores
|
| 154 |
|
| 155 |
|
| 156 |
+
def runner(preset, dataset_path, device="cpu"):
|
| 157 |
dsobj = ImageFolderDataset(path=dataset_path, resolution=64)
|
| 158 |
refimg, reflabel = dsobj[0]
|
| 159 |
print(refimg.shape, refimg.dtype, reflabel)
|
|
|
|
| 161 |
dsobj, batch_size=48, num_workers=4, prefetch_factor=2
|
| 162 |
)
|
| 163 |
|
| 164 |
+
model = build_model(preset=preset, device=device)
|
| 165 |
score_norms = []
|
| 166 |
|
| 167 |
for x, _ in tqdm(dsloader):
|
|
|
|
| 172 |
score_norms = torch.cat(score_norms, dim=0)
|
| 173 |
|
| 174 |
os.makedirs("out/msma", exist_ok=True)
|
| 175 |
+
with open(f"out/msma/{preset}_imagenette_score_norms.pt", "wb") as f:
|
| 176 |
torch.save(score_norms, f)
|
| 177 |
|
| 178 |
print(f"Computed score norms for {score_norms.shape[0]} samples")
|
| 179 |
|
| 180 |
|
| 181 |
if __name__ == "__main__":
|
| 182 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 183 |
+
preset = "edm2-img64-s-fid"
|
| 184 |
+
# runner(
|
| 185 |
+
# preset=preset,
|
| 186 |
+
# dataset_path="/GROND_STOR/amahmood/datasets/img64/",
|
| 187 |
+
# device="cuda",
|
| 188 |
+
# )
|
| 189 |
+
train_gmm(
|
| 190 |
+
f"out/msma/{preset}_imagenette_score_norms.pt", outdir=f"out/msma/{preset}"
|
| 191 |
+
)
|
| 192 |
+
s = test_runner(device=device)
|
| 193 |
s = s.square().sum(dim=(2, 3, 4)) ** 0.5
|
| 194 |
s = s.to("cpu").numpy()
|
| 195 |
+
nll, pct = compute_gmm_likelihood(s, gmmdir=f"out/msma/{preset}")
|
| 196 |
print(f"Anomaly score for image: {nll[0]:.3f} @ {pct*100:.2f} percentile")
|