Spaces:
Sleeping
Sleeping
Anton Bushuiev
commited on
Commit
·
29bd8b5
1
Parent(s):
7103bfb
Initial commit
Browse files- .gitattributes +0 -35
- LICENSE +21 -0
- README.md +6 -11
- app.py +542 -0
- assets/logos.png +0 -0
- assets/readme-dimer-close-up.png +0 -0
- requirements.txt +7 -0
.gitattributes
DELETED
|
@@ -1,35 +0,0 @@
|
|
| 1 |
-
*.7z filter=lfs diff=lfs merge=lfs -text
|
| 2 |
-
*.arrow filter=lfs diff=lfs merge=lfs -text
|
| 3 |
-
*.bin filter=lfs diff=lfs merge=lfs -text
|
| 4 |
-
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
| 5 |
-
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
| 6 |
-
*.ftz filter=lfs diff=lfs merge=lfs -text
|
| 7 |
-
*.gz filter=lfs diff=lfs merge=lfs -text
|
| 8 |
-
*.h5 filter=lfs diff=lfs merge=lfs -text
|
| 9 |
-
*.joblib filter=lfs diff=lfs merge=lfs -text
|
| 10 |
-
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
| 11 |
-
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
| 12 |
-
*.model filter=lfs diff=lfs merge=lfs -text
|
| 13 |
-
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
| 14 |
-
*.npy filter=lfs diff=lfs merge=lfs -text
|
| 15 |
-
*.npz filter=lfs diff=lfs merge=lfs -text
|
| 16 |
-
*.onnx filter=lfs diff=lfs merge=lfs -text
|
| 17 |
-
*.ot filter=lfs diff=lfs merge=lfs -text
|
| 18 |
-
*.parquet filter=lfs diff=lfs merge=lfs -text
|
| 19 |
-
*.pb filter=lfs diff=lfs merge=lfs -text
|
| 20 |
-
*.pickle filter=lfs diff=lfs merge=lfs -text
|
| 21 |
-
*.pkl filter=lfs diff=lfs merge=lfs -text
|
| 22 |
-
*.pt filter=lfs diff=lfs merge=lfs -text
|
| 23 |
-
*.pth filter=lfs diff=lfs merge=lfs -text
|
| 24 |
-
*.rar filter=lfs diff=lfs merge=lfs -text
|
| 25 |
-
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 26 |
-
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
| 27 |
-
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
| 28 |
-
*.tar filter=lfs diff=lfs merge=lfs -text
|
| 29 |
-
*.tflite filter=lfs diff=lfs merge=lfs -text
|
| 30 |
-
*.tgz filter=lfs diff=lfs merge=lfs -text
|
| 31 |
-
*.wasm filter=lfs diff=lfs merge=lfs -text
|
| 32 |
-
*.xz filter=lfs diff=lfs merge=lfs -text
|
| 33 |
-
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
-
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
-
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
LICENSE
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
MIT License
|
| 2 |
+
|
| 3 |
+
Copyright (c) 2024 Anton Bushuiev
|
| 4 |
+
|
| 5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
| 6 |
+
of this software and associated documentation files (the "Software"), to deal
|
| 7 |
+
in the Software without restriction, including without limitation the rights
|
| 8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
| 9 |
+
copies of the Software, and to permit persons to whom the Software is
|
| 10 |
+
furnished to do so, subject to the following conditions:
|
| 11 |
+
|
| 12 |
+
The above copyright notice and this permission notice shall be included in all
|
| 13 |
+
copies or substantial portions of the Software.
|
| 14 |
+
|
| 15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
| 16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
| 17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
| 18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
| 19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
| 20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
| 21 |
+
SOFTWARE.
|
README.md
CHANGED
|
@@ -1,14 +1,9 @@
|
|
| 1 |
---
|
| 2 |
-
title: PPIformer
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo:
|
| 6 |
sdk: gradio
|
| 7 |
-
sdk_version: 5.3.0
|
| 8 |
app_file: app.py
|
| 9 |
-
pinned:
|
| 10 |
-
|
| 11 |
-
short_description: Learning to design protein-protein interactions with enhance
|
| 12 |
-
---
|
| 13 |
-
|
| 14 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
| 1 |
---
|
| 2 |
+
title: PPIformer
|
| 3 |
+
emoji: 🔬
|
| 4 |
+
colorFrom: pink
|
| 5 |
+
colorTo: green
|
| 6 |
sdk: gradio
|
|
|
|
| 7 |
app_file: app.py
|
| 8 |
+
pinned: true
|
| 9 |
+
---
|
|
|
|
|
|
|
|
|
|
|
|
app.py
ADDED
|
@@ -0,0 +1,542 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# print("""
|
| 2 |
+
# __ __ _ ___ _ _ _____ _____ _ _ _ _ _ ____ _____
|
| 3 |
+
# | \/ | / \ |_ _| \ | |_ _| ____| \ | | / \ | \ | |/ ___| ____|
|
| 4 |
+
# | |\/| | / _ \ | || \| | | | | _| | \| | / _ \ | \| | | | _|
|
| 5 |
+
# | | | |/ ___ \ | || |\ | | | | |___| |\ |/ ___ \| |\ | |___| |___
|
| 6 |
+
# |_| |_/_/ \_\___|_| \_| |_| |_____|_| \_/_/ \_\_| \_|\____|_____|
|
| 7 |
+
|
| 8 |
+
# ____ ____ _____ _ _ __
|
| 9 |
+
# | __ )| _ \| ____| / \ | |/ /
|
| 10 |
+
# | _ \| |_) | _| / _ \ | ' /
|
| 11 |
+
# | |_) | _ <| |___ / ___ \| . \
|
| 12 |
+
# |____/|_| \_\_____/_/ \_\_|\_\
|
| 13 |
+
# """)
|
| 14 |
+
import os
|
| 15 |
+
# os.system("pip uninstall -y gradio")
|
| 16 |
+
# os.system("pip install gradio==3.50.2")
|
| 17 |
+
# os.system("pip uninstall -y spaces")
|
| 18 |
+
# os.system("pip install spaces==0.8")
|
| 19 |
+
os.system("pip uninstall -y torch")
|
| 20 |
+
os.system("pip install torch==2.0.1")
|
| 21 |
+
|
| 22 |
+
import sys
|
| 23 |
+
import copy
|
| 24 |
+
import random
|
| 25 |
+
import tempfile
|
| 26 |
+
import shutil
|
| 27 |
+
import logging
|
| 28 |
+
from pathlib import Path
|
| 29 |
+
from functools import partial
|
| 30 |
+
|
| 31 |
+
import spaces
|
| 32 |
+
import gradio as gr
|
| 33 |
+
import torch
|
| 34 |
+
import numpy as np
|
| 35 |
+
import pandas as pd
|
| 36 |
+
from Bio.PDB.Polypeptide import protein_letters_3to1
|
| 37 |
+
from biopandas.pdb import PandasPdb
|
| 38 |
+
from colour import Color
|
| 39 |
+
from colour import RGB_TO_COLOR_NAMES
|
| 40 |
+
|
| 41 |
+
from mutils.proteins import AMINO_ACID_CODES_1
|
| 42 |
+
from mutils.pdb import download_pdb
|
| 43 |
+
from mutils.mutations import Mutation
|
| 44 |
+
from ppiref.extraction import PPIExtractor
|
| 45 |
+
from ppiref.utils.ppi import PPIPath
|
| 46 |
+
from ppiref.utils.residue import Residue
|
| 47 |
+
from ppiformer.tasks.node import DDGPPIformer
|
| 48 |
+
from ppiformer.utils.api import download_from_zenodo
|
| 49 |
+
from ppiformer.utils.api import predict_ddg as predict_ddg_
|
| 50 |
+
from ppiformer.utils.torch import fill_diagonal
|
| 51 |
+
from ppiformer.definitions import PPIFORMER_WEIGHTS_DIR
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
import pkg_resources
|
| 55 |
+
import sys
|
| 56 |
+
|
| 57 |
+
def print_package_versions():
|
| 58 |
+
installed_packages = sorted([f"{pkg.key}=={pkg.version}" for pkg in pkg_resources.working_set])
|
| 59 |
+
print("Installed packages and their versions:")
|
| 60 |
+
for package in installed_packages:
|
| 61 |
+
print(package)
|
| 62 |
+
|
| 63 |
+
print("\nPython version:")
|
| 64 |
+
print(sys.version)
|
| 65 |
+
|
| 66 |
+
print_package_versions()
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
logging.basicConfig(
|
| 70 |
+
level=logging.INFO,
|
| 71 |
+
format='%(asctime)s - %(levelname)s - %(message)s',
|
| 72 |
+
handlers=[logging.StreamHandler(sys.stdout)]
|
| 73 |
+
)
|
| 74 |
+
|
| 75 |
+
random.seed(0)
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
@spaces.GPU
|
| 79 |
+
def predict_ddg(models, ppi, muts, return_attn):
|
| 80 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 81 |
+
print(f"[INFO] Device on prediction: {device}")
|
| 82 |
+
models = [model.to(device) for model in models]
|
| 83 |
+
if return_attn:
|
| 84 |
+
ddg_pred, attns = predict_ddg_(models, ppi, muts, return_attn=return_attn)
|
| 85 |
+
return ddg_pred.detach().cpu(), attns.detach().cpu()
|
| 86 |
+
else:
|
| 87 |
+
ddg_pred = predict_ddg_(models, ppi, muts, return_attn=return_attn)
|
| 88 |
+
return ddg_pred.detach().cpu()
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
def process_inputs(inputs, temp_dir):
|
| 92 |
+
pdb_code, pdb_path, partners, muts, muts_path = inputs
|
| 93 |
+
|
| 94 |
+
# Check inputs
|
| 95 |
+
if not pdb_code and not pdb_path:
|
| 96 |
+
raise gr.Error("PPI structure not specified.")
|
| 97 |
+
|
| 98 |
+
if pdb_code and pdb_path:
|
| 99 |
+
gr.Warning("Both PDB code and PDB file specified. Using PDB file.")
|
| 100 |
+
|
| 101 |
+
if not partners:
|
| 102 |
+
raise gr.Error("Partners not specified.")
|
| 103 |
+
|
| 104 |
+
if not muts and not muts_path:
|
| 105 |
+
raise gr.Error("Mutations not specified.")
|
| 106 |
+
|
| 107 |
+
if muts and muts_path:
|
| 108 |
+
gr.Warning("Both mutations and mutations file specified. Using mutations file.")
|
| 109 |
+
|
| 110 |
+
# Prepare PDB input
|
| 111 |
+
if pdb_path:
|
| 112 |
+
# convert file name to PPIRef format
|
| 113 |
+
new_pdb_path = temp_dir / f"pdb/{pdb_path.name.replace('_', '-')}"
|
| 114 |
+
new_pdb_path.parent.mkdir(parents=True, exist_ok=True)
|
| 115 |
+
shutil.copy(str(pdb_path), str(new_pdb_path))
|
| 116 |
+
pdb_path = new_pdb_path
|
| 117 |
+
pdb_path = Path(pdb_path)
|
| 118 |
+
else:
|
| 119 |
+
try:
|
| 120 |
+
pdb_code = pdb_code.strip().lower()
|
| 121 |
+
pdb_path = temp_dir / f'pdb/{pdb_code}.pdb'
|
| 122 |
+
download_pdb(pdb_code, path=pdb_path)
|
| 123 |
+
except:
|
| 124 |
+
raise gr.Error("PDB download failed.")
|
| 125 |
+
|
| 126 |
+
# Parse partners
|
| 127 |
+
partners = list(map(lambda x: x.strip(), partners.split(',')))
|
| 128 |
+
|
| 129 |
+
# Add partners to file name
|
| 130 |
+
pdb_path = pdb_path.rename(pdb_path.with_stem(f"{pdb_path.stem}-{'-'.join(partners)}"))
|
| 131 |
+
|
| 132 |
+
# Extract PPI into temp dir
|
| 133 |
+
try:
|
| 134 |
+
ppi_dir = temp_dir / 'ppi'
|
| 135 |
+
extractor = PPIExtractor(out_dir=ppi_dir, nest_out_dir=True, join=True, radius=10.0)
|
| 136 |
+
extractor.extract(pdb_path, partners=partners)
|
| 137 |
+
ppi_path = PPIPath.construct(ppi_dir, pdb_path.stem, partners)
|
| 138 |
+
except:
|
| 139 |
+
raise gr.Error("PPI extraction failed.")
|
| 140 |
+
|
| 141 |
+
# Prepare mutations input
|
| 142 |
+
if muts_path:
|
| 143 |
+
muts_path = Path(muts_path)
|
| 144 |
+
muts = muts_path.read_text()
|
| 145 |
+
|
| 146 |
+
# Check mutations
|
| 147 |
+
|
| 148 |
+
# Basic format
|
| 149 |
+
try:
|
| 150 |
+
muts = [Mutation.from_str(m) for m in muts.strip().split(';') if m.strip()]
|
| 151 |
+
except Exception as e:
|
| 152 |
+
raise gr.Error(f'Mutations parsing failed: {e}')
|
| 153 |
+
|
| 154 |
+
# Partners
|
| 155 |
+
for mut in muts:
|
| 156 |
+
for pmut in mut.muts:
|
| 157 |
+
if pmut.chain not in partners:
|
| 158 |
+
raise gr.Error(f'Chain of point mutation {pmut} is not in the list of partners {partners}.')
|
| 159 |
+
|
| 160 |
+
# Consistency with provided .pdb
|
| 161 |
+
muts_on_interface = []
|
| 162 |
+
for mut in muts:
|
| 163 |
+
if mut.wt_in_pdb(ppi_path):
|
| 164 |
+
val = True
|
| 165 |
+
elif mut.wt_in_pdb(pdb_path):
|
| 166 |
+
val = False
|
| 167 |
+
else:
|
| 168 |
+
raise gr.Error(f'Wild-type of mutation {mut} is not in the provided .pdb file.')
|
| 169 |
+
muts_on_interface.append(val)
|
| 170 |
+
|
| 171 |
+
muts = [str(m) for m in muts]
|
| 172 |
+
|
| 173 |
+
return pdb_path, ppi_path, muts, muts_on_interface
|
| 174 |
+
|
| 175 |
+
|
| 176 |
+
def plot_3dmol(pdb_path, ppi_path, mut, attn, attn_mut_id=0):
|
| 177 |
+
# NOTE 3DMol.js adapted from https://huggingface.co/spaces/huhlim/cg2all/blob/main/app.py
|
| 178 |
+
|
| 179 |
+
# Read PDB for 3Dmol.js
|
| 180 |
+
with open(pdb_path, "r") as fp:
|
| 181 |
+
lines = fp.readlines()
|
| 182 |
+
mol = ""
|
| 183 |
+
for l in lines:
|
| 184 |
+
mol += l
|
| 185 |
+
mol = mol.replace("OT1", "O ")
|
| 186 |
+
mol = mol.replace("OT2", "OXT")
|
| 187 |
+
|
| 188 |
+
# Read PPI to customize 3Dmol.js visualization
|
| 189 |
+
ppi_df = PandasPdb().read_pdb(ppi_path).df['ATOM']
|
| 190 |
+
ppi_df = ppi_df.groupby(list(Residue._fields)).apply(lambda df: df[df['atom_name'] == 'CA'].iloc[0]).reset_index(drop=True)
|
| 191 |
+
ppi_df['id'] = ppi_df.apply(lambda row: ':'.join([row['residue_name'], row['chain_id'], str(row['residue_number']), row['insertion']]), axis=1)
|
| 192 |
+
ppi_df['id'] = ppi_df['id'].apply(lambda x: x[:-1] if x[-1] == ':' else x)
|
| 193 |
+
muts_id = Mutation.from_str(mut).wt_to_graphein() # flatten ids of all sp muts
|
| 194 |
+
ppi_df['mutated'] = ppi_df.apply(lambda row: row['id'] in muts_id, axis=1)
|
| 195 |
+
|
| 196 |
+
# Prepare attention coeffictients per residue (normalized sum of direct attention from mutated residues)
|
| 197 |
+
attn = torch.nan_to_num(attn, nan=1e-10)
|
| 198 |
+
attn_sub = attn[:, attn_mut_id, 0, :, 0, :, :, :] # models, layers, heads, tokens, tokens
|
| 199 |
+
idx_mutated = torch.from_numpy(ppi_df.index[ppi_df['mutated']].to_numpy())
|
| 200 |
+
attn_sub = fill_diagonal(attn_sub, 1e-10)
|
| 201 |
+
attn_mutated = attn_sub[..., idx_mutated, :]
|
| 202 |
+
attn_mutated.shape
|
| 203 |
+
attns_per_token = torch.sum(attn_mutated, dim=(0, 1, 2, 3))
|
| 204 |
+
attns_per_token = (attns_per_token - attns_per_token.min()) / (attns_per_token.max() - attns_per_token.min())
|
| 205 |
+
attns_per_token += 1e-10
|
| 206 |
+
ppi_df['attn'] = attns_per_token.numpy()
|
| 207 |
+
|
| 208 |
+
chains = ppi_df.sort_values('attn', ascending=False)['chain_id'].unique()
|
| 209 |
+
|
| 210 |
+
# Customize 3Dmol.js visualization https://3dmol.csb.pitt.edu/doc/
|
| 211 |
+
styles = []
|
| 212 |
+
zoom_atoms = []
|
| 213 |
+
|
| 214 |
+
# Cartoon chains
|
| 215 |
+
preferred_colors = ['LimeGreen', 'HotPink', 'RoyalBlue']
|
| 216 |
+
all_colors = [c[0] for c in RGB_TO_COLOR_NAMES.values()]
|
| 217 |
+
all_colors = [c for c in all_colors if c not in preferred_colors + ['Black', 'White']]
|
| 218 |
+
random.shuffle(all_colors)
|
| 219 |
+
all_colors = preferred_colors + all_colors
|
| 220 |
+
all_colors = [Color(c) for c in all_colors]
|
| 221 |
+
chain_to_color = dict(zip(chains, all_colors))
|
| 222 |
+
for chain in chains:
|
| 223 |
+
styles.append([{"chain": chain}, {"cartoon": {"color": chain_to_color[chain].hex_l, "opacity": 0.6}}])
|
| 224 |
+
|
| 225 |
+
# Stick PPI and atoms for zoom
|
| 226 |
+
# TODO Insertions
|
| 227 |
+
for _, row in ppi_df.iterrows():
|
| 228 |
+
color = copy.deepcopy(chain_to_color[row['chain_id']])
|
| 229 |
+
color.saturation = row['attn']
|
| 230 |
+
color = color.hex_l
|
| 231 |
+
if row['mutated']:
|
| 232 |
+
styles.append([
|
| 233 |
+
{'chain': row['chain_id'], 'resi': str(row['residue_number'])},
|
| 234 |
+
{'stick': {'color': 'red', 'radius': 0.2, 'opacity': 1.0}}
|
| 235 |
+
])
|
| 236 |
+
zoom_atoms.append(row['atom_number'])
|
| 237 |
+
else:
|
| 238 |
+
styles.append([
|
| 239 |
+
{'chain': row['chain_id'], 'resi': str(row['residue_number'])},
|
| 240 |
+
{'stick': {'color': color, 'radius': row['attn'] / 5, 'opacity': row['attn']}}
|
| 241 |
+
])
|
| 242 |
+
|
| 243 |
+
# Convert style dicts to JS lines
|
| 244 |
+
styles = ''.join(['viewer.addStyle(' + ', '.join([str(s).replace("'", '"') for s in dcts]) + ');\n' for dcts in styles])
|
| 245 |
+
|
| 246 |
+
# Convert zoom atoms to 3DMol.js selection and add labels for mutated residues
|
| 247 |
+
zoom_animation_duration = 500
|
| 248 |
+
sel = '{\"or\": [' + ', '.join(["{\"serial\": " + str(a) + "}" for a in zoom_atoms]) + ']}'
|
| 249 |
+
zoom = 'viewer.zoomTo(' + sel + ',' + f'{zoom_animation_duration});'
|
| 250 |
+
for atom in zoom_atoms:
|
| 251 |
+
sel = '{\"serial\": ' + str(atom) + '}'
|
| 252 |
+
row = ppi_df[ppi_df['atom_number'] == atom].iloc[0]
|
| 253 |
+
label = protein_letters_3to1[row['residue_name']] + row['chain_id'] + str(row['residue_number']) + row['insertion']
|
| 254 |
+
styles += 'viewer.addLabel(' + f"\"{label}\"," + "{fontSize:16, fontColor:\"red\", backgroundOpacity: 0.0}," + sel + ');\n'
|
| 255 |
+
|
| 256 |
+
# Construct 3Dmol.js visualization script embedded in HTML
|
| 257 |
+
html = (
|
| 258 |
+
"""<!DOCTYPE html>
|
| 259 |
+
<html>
|
| 260 |
+
<head>
|
| 261 |
+
<meta http-equiv="content-type" content="text/html; charset=UTF-8" />
|
| 262 |
+
<style>
|
| 263 |
+
body{
|
| 264 |
+
font-family:sans-serif
|
| 265 |
+
}
|
| 266 |
+
.mol-container {
|
| 267 |
+
width: 100%;
|
| 268 |
+
height: 600px;
|
| 269 |
+
position: relative;
|
| 270 |
+
}
|
| 271 |
+
.mol-container select{
|
| 272 |
+
background-image:None;
|
| 273 |
+
}
|
| 274 |
+
</style>
|
| 275 |
+
<script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/3.6.3/jquery.min.js" integrity="sha512-STof4xm1wgkfm7heWqFJVn58Hm3EtS31XFaagaa8VMReCXAkQnJZ+jEy8PCC/iT18dFy95WcExNHFTqLyp72eQ==" crossorigin="anonymous" referrerpolicy="no-referrer"></script>
|
| 276 |
+
<script src="https://3Dmol.csb.pitt.edu/build/3Dmol-min.js"></script>
|
| 277 |
+
</head>
|
| 278 |
+
<body>
|
| 279 |
+
<div id="container" class="mol-container"></div>
|
| 280 |
+
|
| 281 |
+
<script>
|
| 282 |
+
let pdb = `"""
|
| 283 |
+
+ mol
|
| 284 |
+
+ """`
|
| 285 |
+
|
| 286 |
+
$(document).ready(function () {
|
| 287 |
+
let element = $("#container");
|
| 288 |
+
let config = { backgroundColor: "white" };
|
| 289 |
+
let viewer = $3Dmol.createViewer(element, config);
|
| 290 |
+
viewer.addModel(pdb, "pdb");
|
| 291 |
+
viewer.setStyle({"model": 0}, {"ray_opaque_background": "off"}, {"stick": {"color": "lightgrey", "opacity": 0.5}});
|
| 292 |
+
"""
|
| 293 |
+
+ styles
|
| 294 |
+
+ zoom
|
| 295 |
+
+ """
|
| 296 |
+
viewer.render();
|
| 297 |
+
})
|
| 298 |
+
</script>
|
| 299 |
+
</body></html>"""
|
| 300 |
+
)
|
| 301 |
+
|
| 302 |
+
return f"""<iframe style="width: 100%; height: 600px" name="result" allow="midi; geolocation; microphone; camera;
|
| 303 |
+
display-capture; encrypted-media;" sandbox="allow-modals allow-forms
|
| 304 |
+
allow-scripts allow-same-origin allow-popups
|
| 305 |
+
allow-top-navigation-by-user-activation allow-downloads" allowfullscreen=""
|
| 306 |
+
allowpaymentrequest="" frameborder="0" srcdoc='{html}'></iframe>"""
|
| 307 |
+
|
| 308 |
+
|
| 309 |
+
def predict(models, temp_dir, *inputs):
|
| 310 |
+
logging.info('Starting prediction')
|
| 311 |
+
|
| 312 |
+
# Process input
|
| 313 |
+
pdb_path, ppi_path, muts, muts_on_interface = process_inputs(inputs, temp_dir)
|
| 314 |
+
|
| 315 |
+
# Create dataframe
|
| 316 |
+
df = pd.DataFrame({
|
| 317 |
+
'Mutation': muts,
|
| 318 |
+
'ddG [kcal/mol]': len(muts) * [np.nan],
|
| 319 |
+
'10A Interface': muts_on_interface,
|
| 320 |
+
'Attn Id': len(muts) * [np.nan],
|
| 321 |
+
})
|
| 322 |
+
|
| 323 |
+
# Show warning if some mutations are not on the interface
|
| 324 |
+
muts_not_on_interface = df[~df['10A Interface']]['Mutation'].tolist()
|
| 325 |
+
n_muts_not_on_interface = len(muts_not_on_interface)
|
| 326 |
+
if n_muts_not_on_interface:
|
| 327 |
+
n_muts_warn = 5
|
| 328 |
+
muts_not_on_interface = ';'.join(muts_not_on_interface[:n_muts_warn])
|
| 329 |
+
if n_muts_not_on_interface > n_muts_warn:
|
| 330 |
+
muts_not_on_interface += f'... (and {n_muts_not_on_interface - n_muts_warn} more)'
|
| 331 |
+
gr.Warning((
|
| 332 |
+
f"{muts_not_on_interface} {'is' if n_muts_not_on_interface == 1 else 'are'} not on the interface. "
|
| 333 |
+
f"The model will predict the effect{'s' if n_muts_not_on_interface > 1 else ''} of "
|
| 334 |
+
f"mutation{'s' if n_muts_not_on_interface > 1 else ''} on the whole complex. "
|
| 335 |
+
f"This may lead to less accurate predictions."
|
| 336 |
+
))
|
| 337 |
+
|
| 338 |
+
logging.info('Inputs processed')
|
| 339 |
+
|
| 340 |
+
# Predict using interface for mutations on the interface and using the whole complex otherwise
|
| 341 |
+
attn_ppi, attn_pdb = None, None
|
| 342 |
+
for df_sub, path in [
|
| 343 |
+
[df[df['10A Interface']], ppi_path],
|
| 344 |
+
[df[~df['10A Interface']], pdb_path]
|
| 345 |
+
]:
|
| 346 |
+
if not len(df_sub):
|
| 347 |
+
continue
|
| 348 |
+
|
| 349 |
+
# Predict
|
| 350 |
+
try:
|
| 351 |
+
ddg, attn = predict_ddg(models, path, df_sub['Mutation'].tolist(), return_attn=True)
|
| 352 |
+
except Exception as e:
|
| 353 |
+
print(f"Prediction failed. {str(e)}")
|
| 354 |
+
raise gr.Error(f"Prediction failed. {str(e)}")
|
| 355 |
+
ddg = ddg.detach().numpy().tolist()
|
| 356 |
+
|
| 357 |
+
logging.info(f'Predictions made for {path}')
|
| 358 |
+
|
| 359 |
+
# Update dataframe and attention tensor
|
| 360 |
+
idx = df_sub.index
|
| 361 |
+
df.loc[idx, 'ddG [kcal/mol]'] = ddg
|
| 362 |
+
df.loc[idx, 'Attn Id'] = np.arange(len(idx))
|
| 363 |
+
|
| 364 |
+
if path == ppi_path:
|
| 365 |
+
attn_ppi = attn
|
| 366 |
+
else:
|
| 367 |
+
attn_pdb = attn
|
| 368 |
+
df['Attn Id'] = df['Attn Id'].astype(int)
|
| 369 |
+
|
| 370 |
+
# Round ddG values
|
| 371 |
+
df['ddG [kcal/mol]'] = df['ddG [kcal/mol]'].round(3)
|
| 372 |
+
|
| 373 |
+
# Create PPI-specific dropdown
|
| 374 |
+
dropdown = gr.Dropdown(
|
| 375 |
+
df['Mutation'].tolist(), value=df['Mutation'].iloc[0],
|
| 376 |
+
interactive=True, visible=True, label="Mutation to visualize",
|
| 377 |
+
)
|
| 378 |
+
|
| 379 |
+
# Predefine plot arguments for all dropdown choices
|
| 380 |
+
dropdown_choices_to_plot_args = {
|
| 381 |
+
mut: (
|
| 382 |
+
pdb_path,
|
| 383 |
+
ppi_path if df[df['Mutation'] == mut]['10A Interface'].iloc[0] else pdb_path,
|
| 384 |
+
mut,
|
| 385 |
+
attn_ppi if df[df['Mutation'] == mut]['10A Interface'].iloc[0] else attn_pdb,
|
| 386 |
+
df[df['Mutation'] == mut]['Attn Id'].iloc[0]
|
| 387 |
+
)
|
| 388 |
+
for mut in df['Mutation']
|
| 389 |
+
}
|
| 390 |
+
|
| 391 |
+
# Create dataframe file
|
| 392 |
+
path = 'ppiformer_ddg_predictions.csv'
|
| 393 |
+
if n_muts_not_on_interface:
|
| 394 |
+
df = df[['Mutation', 'ddG [kcal/mol]', '10A Interface']]
|
| 395 |
+
df.to_csv(path, index=False)
|
| 396 |
+
df = gr.Dataframe(
|
| 397 |
+
value=df,
|
| 398 |
+
headers=['Mutation', 'ddG [kcal/mol]', '10A Interface'],
|
| 399 |
+
datatype=['str', 'number', 'bool'],
|
| 400 |
+
col_count=(3, 'fixed'),
|
| 401 |
+
)
|
| 402 |
+
else:
|
| 403 |
+
df = df[['Mutation', 'ddG [kcal/mol]']]
|
| 404 |
+
df.to_csv(path, index=False)
|
| 405 |
+
df = gr.Dataframe(
|
| 406 |
+
value=df,
|
| 407 |
+
headers=['Mutation', 'ddG [kcal/mol]'],
|
| 408 |
+
datatype=['str', 'number'],
|
| 409 |
+
col_count=(2, 'fixed'),
|
| 410 |
+
)
|
| 411 |
+
|
| 412 |
+
logging.info('Prediction results prepared')
|
| 413 |
+
|
| 414 |
+
return df, path, dropdown, dropdown_choices_to_plot_args
|
| 415 |
+
|
| 416 |
+
|
| 417 |
+
def update_plot(dropdown, dropdown_choices_to_plot_args):
|
| 418 |
+
return plot_3dmol(*dropdown_choices_to_plot_args[dropdown])
|
| 419 |
+
|
| 420 |
+
|
| 421 |
+
app = gr.Blocks(theme=gr.themes.Default(primary_hue="green", secondary_hue="pink"))
|
| 422 |
+
with app:
|
| 423 |
+
|
| 424 |
+
# Input GUI
|
| 425 |
+
gr.Markdown(value="""
|
| 426 |
+
# PPIformer Web
|
| 427 |
+
### Computational Design of Protein-Protein Interactions
|
| 428 |
+
""")
|
| 429 |
+
gr.Image("assets/readme-dimer-close-up.png")
|
| 430 |
+
gr.Markdown(value="""
|
| 431 |
+
[PPIformer](https://github.com/anton-bushuiev/PPIformer/tree/main) is a state-of-the-art predictor of the effects of mutations
|
| 432 |
+
on protein-protein interactions (PPIs), as quantified by the binding free energy changes (ddG). PPIformer was shown to successfully
|
| 433 |
+
identify known favourable mutations of the [staphylokinase thrombolytics](https://pubmed.ncbi.nlm.nih.gov/10942387/)
|
| 434 |
+
and a [human antibody](https://www.pnas.org/doi/10.1073/pnas.2122954119) against the SARS-CoV-2 spike protein. The model was pre-trained
|
| 435 |
+
on the [PPIRef](https://github.com/anton-bushuiev/PPIRef)
|
| 436 |
+
dataset via a coarse-grained structural masked modeling and fine-tuned on the [SKEMPI v2.0](https://life.bsc.es/pid/skempi2) dataset via log odds.
|
| 437 |
+
Please see more details in [our ICLR 2024 paper](https://arxiv.org/abs/2310.18515).
|
| 438 |
+
|
| 439 |
+
**Inputs.** To use PPIformer on your data, please specify the PPI structure (PDB code or .pdb file), interacting proteins of interest
|
| 440 |
+
(chain codes in the file) and mutations (semicolon-separated list or file with mutations in the
|
| 441 |
+
[standard format](https://foldxsuite.crg.eu/parameter/mutant-file): wild-type residue, chain, residue number, mutant residue).
|
| 442 |
+
For inspiration, you can use one of the examples below: click on one of the rows to pre-fill the inputs. After specifying the inputs,
|
| 443 |
+
press the button to predict the effects of mutations on the PPI. Currently the model runs on CPU, so the predictions may take a few minutes.
|
| 444 |
+
|
| 445 |
+
**Outputs.** After making a prediction with the model, you will see binding free energy changes for each mutation (ddG values in kcal/mol).
|
| 446 |
+
A more negative value indicates an improvement in affinity, whereas a more positive value means a reduction in affinity.
|
| 447 |
+
Below you will also see a 3D visualization of the PPI with wild types of mutated residues highlighted in red. The visualization additionally shows
|
| 448 |
+
the attention coefficients of the model for the nearest neighboring residues, which quantifies the contribution of the residues
|
| 449 |
+
to the predicted ddG value. The brighter and thicker a residue is, the more attention the model paid to it.
|
| 450 |
+
""")
|
| 451 |
+
|
| 452 |
+
with gr.Row(equal_height=True):
|
| 453 |
+
with gr.Column():
|
| 454 |
+
gr.Markdown("## PPI structure")
|
| 455 |
+
with gr.Row(equal_height=True):
|
| 456 |
+
pdb_code = gr.Textbox(placeholder="1BUI", label="PDB code", info="Protein Data Bank identifier for the structure (https://www.rcsb.org/)")
|
| 457 |
+
partners = gr.Textbox(placeholder="A,B,C", label="Partners", info="Protein chain identifiers in the PDB file forming the PPI interface (two or more)")
|
| 458 |
+
pdb_path = gr.File(file_count="single", label="Or .pdb file instead of PDB code (your structure will only be used for this prediction and not stored anywhere)")
|
| 459 |
+
|
| 460 |
+
with gr.Column():
|
| 461 |
+
gr.Markdown("## Mutations")
|
| 462 |
+
muts = gr.Textbox(placeholder="SC16A;FC47A;SC16A,FC47A", label="List of (multi-point) mutations", info="SC16A;FC47A;SC16A,FC47A for three mutations: serine to alanine at position 16 in chain C, phenylalanine to alanine at position 47 in chain C, and their double-point combination")
|
| 463 |
+
muts_path = gr.File(file_count="single", label="Or file with mutations")
|
| 464 |
+
|
| 465 |
+
examples = gr.Examples(
|
| 466 |
+
examples=[
|
| 467 |
+
["1BUI", "A,B,C", "SC16A,FC47A;SC16A;FC47A"],
|
| 468 |
+
["3QIB", "A,B,P,C,D", "YP7F,TP12S;YP7F;TP12S"],
|
| 469 |
+
["1KNE", "A,P", ';'.join([f"TP6{a}" for a in AMINO_ACID_CODES_1])]
|
| 470 |
+
],
|
| 471 |
+
inputs=[pdb_code, partners, muts],
|
| 472 |
+
label="Examples (click on a line to pre-fill the inputs)",
|
| 473 |
+
cache_examples=False
|
| 474 |
+
)
|
| 475 |
+
|
| 476 |
+
# Predict GUI
|
| 477 |
+
predict_button = gr.Button(value="Predict effects of mutations on PPI", variant="primary")
|
| 478 |
+
|
| 479 |
+
# Output GUI
|
| 480 |
+
gr.Markdown("## Predictions")
|
| 481 |
+
df_file = gr.File(label="Download predictions as .csv", interactive=False, visible=True)
|
| 482 |
+
df = gr.Dataframe(
|
| 483 |
+
headers=["Mutation", "ddG [kcal/mol]"],
|
| 484 |
+
datatype=["str", "number"],
|
| 485 |
+
col_count=(2, "fixed"),
|
| 486 |
+
)
|
| 487 |
+
dropdown = gr.Dropdown(interactive=True, visible=False)
|
| 488 |
+
dropdown_choices_to_plot_args = gr.State([])
|
| 489 |
+
plot = gr.HTML()
|
| 490 |
+
|
| 491 |
+
# Bottom info box
|
| 492 |
+
gr.Markdown(value="""
|
| 493 |
+
<br/>
|
| 494 |
+
|
| 495 |
+
## About this web
|
| 496 |
+
|
| 497 |
+
**Use cases**. The predictor can be used in: (i) Drug Discovery for the development of novel drugs and vaccines for various diseases such as cancer,
|
| 498 |
+
neurodegenerative disorders, and infectious diseases, (ii) Biotechnological Applications to develop new biocatalysts for biofuels,
|
| 499 |
+
industrial chemicals, and pharmaceuticals (iii) Therapeutic Protein Design to develop therapeutic proteins with enhanced stability,
|
| 500 |
+
specificity, and efficacy, and (iv) Mechanistic Studies to gain insights into fundamental biological processes, such as signal transduction,
|
| 501 |
+
gene regulation, and immune response.
|
| 502 |
+
|
| 503 |
+
**Acknowledgement**. Please, use the following citation to acknowledge the use of our service. The web server is provided free of charge for non-commercial use.
|
| 504 |
+
> Bushuiev, Anton, Roman Bushuiev, Petr Kouba, Anatolii Filkin, Marketa Gabrielova, Michal Gabriel, Jiri Sedlar, Tomas Pluskal, Jiri Damborsky, Stanislav Mazurenko, Josef Sivic.
|
| 505 |
+
> "Learning to design protein-protein interactions with enhanced generalization". The Twelfth International Conference on Learning Representations (ICLR 2024).
|
| 506 |
+
> [https://arxiv.org/abs/2310.18515](https://arxiv.org/abs/2310.18515).
|
| 507 |
+
|
| 508 |
+
**Contact**. Please share your feedback or report any bugs through [GitHub Issues](https://github.com/anton-bushuiev/PPIformer/issues/new), or feel free to contact us directly at [[email protected]](mailto:[email protected]).
|
| 509 |
+
""")
|
| 510 |
+
gr.Image("assets/logos.png")
|
| 511 |
+
|
| 512 |
+
# Download weights from Zenodo
|
| 513 |
+
download_from_zenodo('weights.zip')
|
| 514 |
+
|
| 515 |
+
# Set device
|
| 516 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 517 |
+
print(f"[INFO] Device on start: {device}")
|
| 518 |
+
|
| 519 |
+
# Load models
|
| 520 |
+
models = [
|
| 521 |
+
DDGPPIformer.load_from_checkpoint(
|
| 522 |
+
PPIFORMER_WEIGHTS_DIR / f'ddg_regression/{i}.ckpt',
|
| 523 |
+
map_location=torch.device('cpu')
|
| 524 |
+
).eval()
|
| 525 |
+
for i in range(3)
|
| 526 |
+
]
|
| 527 |
+
models = [model.to(device) for model in models]
|
| 528 |
+
|
| 529 |
+
# Create temporary directory for storing downloaded PDBs and extracted PPIs
|
| 530 |
+
temp_dir_obj = tempfile.TemporaryDirectory()
|
| 531 |
+
temp_dir = Path(temp_dir_obj.name)
|
| 532 |
+
|
| 533 |
+
# Main logic
|
| 534 |
+
inputs = [pdb_code, pdb_path, partners, muts, muts_path]
|
| 535 |
+
outputs = [df, df_file, dropdown, dropdown_choices_to_plot_args]
|
| 536 |
+
predict = partial(predict, models, temp_dir)
|
| 537 |
+
predict_button.click(predict, inputs=inputs, outputs=outputs)
|
| 538 |
+
|
| 539 |
+
# Update plot on dropdown change
|
| 540 |
+
dropdown.change(update_plot, inputs=[dropdown, dropdown_choices_to_plot_args], outputs=[plot])
|
| 541 |
+
|
| 542 |
+
app.launch(allowed_paths=['./assets'])
|
assets/logos.png
ADDED
|
assets/readme-dimer-close-up.png
ADDED
|
requirements.txt
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
ppiformer @ git+https://github.com/anton-bushuiev/ppiformer.git@main
|
| 2 |
+
# gradio==3.50.2
|
| 3 |
+
# spaces
|
| 4 |
+
# typing_extensions==4.7.1
|
| 5 |
+
# gradio[oauth]==5.3.0
|
| 6 |
+
# uvicorn>=0.14.0
|
| 7 |
+
# spaces==0.30.4
|