File size: 11,165 Bytes
1601325
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
"""
FastAPI service for Czech text correction pipeline
Combines grammar error correction and punctuation restoration
"""

from fastapi import FastAPI, HTTPException, Request
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel, Field
from typing import Optional, List, Dict
import torch
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForTokenClassification, pipeline
import time
import re
import logging
from contextlib import asynccontextmanager

# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Global variables for models
gec_model = None
gec_tokenizer = None
punct_pipeline = None
device = None

# Optimal hyperparameters for production
GEC_CONFIG = {
    "num_beams": 8,
    "do_sample": False,
    "repetition_penalty": 1.0,
    "length_penalty": 1.0,
    "no_repeat_ngram_size": 0,
    "early_stopping": True,
    "max_new_tokens": 1500
}

@asynccontextmanager
async def lifespan(app: FastAPI):
    """Load models on startup, cleanup on shutdown"""
    global gec_model, gec_tokenizer, punct_pipeline, device

    logger.info("Loading models...")

    # Setup device
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    logger.info(f"Using device: {device}")

    # Load GEC model
    logger.info("Loading Czech GEC model...")
    gec_tokenizer = AutoTokenizer.from_pretrained("ufal/byt5-large-geccc-mate")
    gec_model = AutoModelForSeq2SeqLM.from_pretrained("ufal/byt5-large-geccc-mate")
    gec_model = gec_model.to(device)
    logger.info("GEC model loaded successfully")

    # Load punctuation model
    logger.info("Loading punctuation model...")
    punct_tokenizer = AutoTokenizer.from_pretrained("kredor/punctuate-all")
    punct_model = AutoModelForTokenClassification.from_pretrained("kredor/punctuate-all")
    punct_pipeline = pipeline(
        "token-classification",
        model=punct_model,
        tokenizer=punct_tokenizer,
        device=0 if torch.cuda.is_available() else -1
    )
    logger.info("Punctuation model loaded successfully")

    logger.info("All models loaded and ready")

    yield

    # Cleanup (if needed)
    logger.info("Shutting down...")

# Create FastAPI app with lifespan
app = FastAPI(
    title="Czech Text Correction API",
    description="API for Czech grammar error correction and punctuation restoration",
    version="1.0.0",
    lifespan=lifespan
)

# Enable CORS
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

# Request/Response models
class CorrectionRequest(BaseModel):
    text: str = Field(..., max_length=5000, description="Czech text to correct")
    options: Optional[Dict] = Field(default={}, description="Optional parameters")

class CorrectionResponse(BaseModel):
    success: bool
    corrected_text: str
    processing_time_ms: Optional[float] = None
    error: Optional[str] = None

class BatchCorrectionRequest(BaseModel):
    texts: List[str] = Field(..., max_items=10, description="List of texts to correct")
    options: Optional[Dict] = Field(default={}, description="Optional parameters")

class BatchCorrectionResponse(BaseModel):
    success: bool
    corrected_texts: List[str]
    processing_time_ms: Optional[float] = None
    error: Optional[str] = None

class HealthResponse(BaseModel):
    status: str
    models_loaded: bool
    gpu_available: bool
    device: str

class InfoResponse(BaseModel):
    name: str
    version: str
    models: Dict[str, str]
    capabilities: List[str]
    max_input_length: int

def apply_gec_correction(text: str) -> str:
    """Apply grammar error correction to text"""
    if not text.strip():
        return text

    # Tokenize
    inputs = gec_tokenizer(
        text,
        return_tensors="pt",
        max_length=1024,
        truncation=True
    )
    inputs = {k: v.to(device) for k, v in inputs.items()}

    # Generate correction
    with torch.no_grad():
        outputs = gec_model.generate(
            **inputs,
            **GEC_CONFIG
        )

    # Decode
    corrected = gec_tokenizer.decode(outputs[0], skip_special_tokens=True)
    return corrected

def apply_punctuation(text: str) -> str:
    """Apply punctuation and capitalization to text"""
    if not text.strip():
        return text

    # Process with pipeline
    clean_text = text.lower()
    results = punct_pipeline(clean_text)

    # Build punctuation map
    punct_map = {}
    current_word = ""
    current_punct = ""

    for i, result in enumerate(results):
        word = result['word'].replace('▁', '').strip()

        # Map entity labels to punctuation
        entity = result['entity']
        punct_marks = {
            'LABEL_0': '',
            'LABEL_1': '.',
            'LABEL_2': ',',
            'LABEL_3': '?',
            'LABEL_4': '-',
            'LABEL_5': ':'
        }
        punct = punct_marks.get(entity, '')

        # Handle subword tokens
        if not result['word'].startswith('▁') and i > 0:
            current_word += word
        else:
            if current_word:
                punct_map[current_word] = current_punct
            current_word = word
            current_punct = punct

    # Add last word
    if current_word:
        punct_map[current_word] = current_punct

    # Reconstruct with punctuation
    words = clean_text.split()
    punctuated = []

    for word in words:
        if word in punct_map and punct_map[word]:
            punctuated.append(word + punct_map[word])
        else:
            punctuated.append(word)

    # Join and capitalize sentences
    result = ' '.join(punctuated)

    # Capitalize first letter and after sentence endings
    sentences = re.split(r'(?<=[.?!])\s+', result)
    capitalized = ' '.join(s[0].upper() + s[1:] if s else s for s in sentences)

    # Clean spacing around punctuation
    for p in [',', '.', '?', ':', '!', ';']:
        capitalized = capitalized.replace(f' {p}', p)

    return capitalized

def process_text(text: str) -> str:
    """Full pipeline: GEC + punctuation"""
    # Step 1: Grammar correction
    gec_corrected = apply_gec_correction(text)

    # Step 2: Punctuation and capitalization
    final_text = apply_punctuation(gec_corrected)

    return final_text

@app.post("/api/correct", response_model=CorrectionResponse)
async def correct_text(request: CorrectionRequest):
    """
    Correct Czech text (grammar + punctuation)
    """
    try:
        start_time = time.time()

        # Validate input
        if not request.text.strip():
            raise HTTPException(status_code=400, detail="Text cannot be empty")

        if len(request.text) > 5000:
            raise HTTPException(status_code=400, detail="Text too long (max 5000 characters)")

        # Process text
        corrected = process_text(request.text)

        # Calculate processing time
        processing_time = (time.time() - start_time) * 1000

        # Include timing if requested
        response = CorrectionResponse(
            success=True,
            corrected_text=corrected
        )

        if request.options.get("include_timing", False):
            response.processing_time_ms = processing_time

        return response

    except Exception as e:
        logger.error(f"Error processing text: {str(e)}")
        return CorrectionResponse(
            success=False,
            corrected_text="",
            error=str(e)
        )

@app.post("/api/correct/batch", response_model=BatchCorrectionResponse)
async def correct_batch(request: BatchCorrectionRequest):
    """
    Correct multiple Czech texts
    """
    try:
        start_time = time.time()

        # Validate
        if not request.texts:
            raise HTTPException(status_code=400, detail="No texts provided")

        # Process each text
        corrected_texts = []
        for text in request.texts:
            if len(text) > 5000:
                corrected_texts.append(f"[Error: Text too long]")
            else:
                corrected = process_text(text)
                corrected_texts.append(corrected)

        # Calculate processing time
        processing_time = (time.time() - start_time) * 1000

        response = BatchCorrectionResponse(
            success=True,
            corrected_texts=corrected_texts
        )

        if request.options.get("include_timing", False):
            response.processing_time_ms = processing_time

        return response

    except Exception as e:
        logger.error(f"Error processing batch: {str(e)}")
        return BatchCorrectionResponse(
            success=False,
            corrected_texts=[],
            error=str(e)
        )

@app.post("/api/correct/gec-only")
async def correct_gec_only(request: CorrectionRequest):
    """
    Apply only grammar error correction (no punctuation)
    """
    try:
        corrected = apply_gec_correction(request.text)
        return CorrectionResponse(
            success=True,
            corrected_text=corrected
        )
    except Exception as e:
        return CorrectionResponse(
            success=False,
            corrected_text="",
            error=str(e)
        )

@app.post("/api/correct/punct-only")
async def correct_punct_only(request: CorrectionRequest):
    """
    Apply only punctuation restoration (no grammar correction)
    """
    try:
        corrected = apply_punctuation(request.text)
        return CorrectionResponse(
            success=True,
            corrected_text=corrected
        )
    except Exception as e:
        return CorrectionResponse(
            success=False,
            corrected_text="",
            error=str(e)
        )

@app.get("/api/health", response_model=HealthResponse)
async def health_check():
    """
    Check API health and model status
    """
    models_loaded = (gec_model is not None and punct_pipeline is not None)

    return HealthResponse(
        status="healthy" if models_loaded else "loading",
        models_loaded=models_loaded,
        gpu_available=torch.cuda.is_available(),
        device=str(device) if device else "not initialized"
    )

@app.get("/api/info", response_model=InfoResponse)
async def get_info():
    """
    Get API information and capabilities
    """
    return InfoResponse(
        name="Czech Text Correction API",
        version="1.0.0",
        models={
            "gec": "ufal/byt5-large-geccc-mate",
            "punctuation": "kredor/punctuate-all"
        },
        capabilities=[
            "Grammar error correction",
            "Punctuation restoration",
            "Capitalization",
            "Batch processing",
            "Czech language focus"
        ],
        max_input_length=5000
    )

@app.get("/")
async def root():
    """Root endpoint with API documentation link"""
    return {
        "message": "Czech Text Correction API",
        "docs": "/docs",
        "health": "/api/health",
        "info": "/api/info"
    }

if __name__ == "__main__":
    import uvicorn
    import os
    port = int(os.environ.get("PORT", 7860))
    uvicorn.run(app, host="0.0.0.0", port=port)