Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,148 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import whisper
|
| 3 |
+
import yt_dlp
|
| 4 |
+
import os
|
| 5 |
+
import traceback
|
| 6 |
+
from pydub import AudioSegment
|
| 7 |
+
from threading import Thread
|
| 8 |
+
from queue import Queue
|
| 9 |
+
|
| 10 |
+
# Global variable to store the selected model
|
| 11 |
+
selected_model = None
|
| 12 |
+
|
| 13 |
+
def load_whisper_model(model_name):
|
| 14 |
+
global selected_model
|
| 15 |
+
selected_model = whisper.load_model(model_name)
|
| 16 |
+
return f"Loaded {model_name} model"
|
| 17 |
+
|
| 18 |
+
def chunk_audio(audio_file, chunk_size_ms=30000):
|
| 19 |
+
audio = AudioSegment.from_file(audio_file)
|
| 20 |
+
chunks = [audio[i:i+chunk_size_ms] for i in range(0, len(audio), chunk_size_ms)]
|
| 21 |
+
return chunks
|
| 22 |
+
|
| 23 |
+
def stream_transcription(audio_file):
|
| 24 |
+
segment_queue = Queue()
|
| 25 |
+
|
| 26 |
+
def transcribe_worker():
|
| 27 |
+
try:
|
| 28 |
+
chunks = chunk_audio(audio_file)
|
| 29 |
+
for i, chunk in enumerate(chunks):
|
| 30 |
+
chunk_file = f"temp_chunk_{i}.wav"
|
| 31 |
+
chunk.export(chunk_file, format="wav")
|
| 32 |
+
result = selected_model.transcribe(chunk_file)
|
| 33 |
+
os.remove(chunk_file)
|
| 34 |
+
for segment in result['segments']:
|
| 35 |
+
segment_text = f"[{segment['start'] + i*30:.2f}s -> {segment['end'] + i*30:.2f}s] {segment['text']}\n"
|
| 36 |
+
segment_queue.put(segment_text)
|
| 37 |
+
segment_queue.put(None) # Signal end of transcription
|
| 38 |
+
except Exception as e:
|
| 39 |
+
segment_queue.put(f"Error: {str(e)}")
|
| 40 |
+
segment_queue.put(None)
|
| 41 |
+
|
| 42 |
+
Thread(target=transcribe_worker).start()
|
| 43 |
+
|
| 44 |
+
full_transcript = ""
|
| 45 |
+
while True:
|
| 46 |
+
segment_text = segment_queue.get()
|
| 47 |
+
if segment_text is None:
|
| 48 |
+
break
|
| 49 |
+
if segment_text.startswith("Error"):
|
| 50 |
+
yield segment_text
|
| 51 |
+
break
|
| 52 |
+
full_transcript += segment_text
|
| 53 |
+
yield full_transcript
|
| 54 |
+
|
| 55 |
+
def download_youtube_audio(youtube_url):
|
| 56 |
+
ydl_opts = {
|
| 57 |
+
'format': 'bestaudio/best',
|
| 58 |
+
'postprocessors': [{
|
| 59 |
+
'key': 'FFmpegExtractAudio',
|
| 60 |
+
'preferredcodec': 'mp3',
|
| 61 |
+
'preferredquality': '192',
|
| 62 |
+
}],
|
| 63 |
+
'outtmpl': 'temp_audio.%(ext)s',
|
| 64 |
+
}
|
| 65 |
+
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
|
| 66 |
+
ydl.download([youtube_url])
|
| 67 |
+
return "temp_audio.mp3"
|
| 68 |
+
|
| 69 |
+
def process_input(model, input_type, youtube_url=None, audio_file=None):
|
| 70 |
+
try:
|
| 71 |
+
yield "Loading Whisper model..."
|
| 72 |
+
load_whisper_model(model)
|
| 73 |
+
yield f"Loaded {model} model. "
|
| 74 |
+
|
| 75 |
+
if input_type == "YouTube URL":
|
| 76 |
+
if youtube_url:
|
| 77 |
+
yield "Downloading audio from YouTube..."
|
| 78 |
+
audio_file = download_youtube_audio(youtube_url)
|
| 79 |
+
yield "Download complete. Starting transcription...\n"
|
| 80 |
+
else:
|
| 81 |
+
yield "Please provide a valid YouTube URL."
|
| 82 |
+
return
|
| 83 |
+
elif input_type == "Audio File":
|
| 84 |
+
if not audio_file:
|
| 85 |
+
yield "Please upload an audio file."
|
| 86 |
+
return
|
| 87 |
+
else:
|
| 88 |
+
yield "Starting transcription...\n"
|
| 89 |
+
|
| 90 |
+
yield from stream_transcription(audio_file)
|
| 91 |
+
except Exception as e:
|
| 92 |
+
error_msg = f"An error occurred: {str(e)}\n"
|
| 93 |
+
error_msg += traceback.format_exc()
|
| 94 |
+
print(error_msg)
|
| 95 |
+
yield f"Error: {str(e)}"
|
| 96 |
+
finally:
|
| 97 |
+
if input_type == "YouTube URL" and audio_file:
|
| 98 |
+
os.remove(audio_file)
|
| 99 |
+
# Define the Gradio interface
|
| 100 |
+
with gr.Blocks() as iface:
|
| 101 |
+
gr.Markdown("# Whisper Transcription App")
|
| 102 |
+
gr.Markdown("Transcribe YouTube videos or audio files using OpenAI's Whisper model. Large files and long videos can take a very long time to process.")
|
| 103 |
+
|
| 104 |
+
with gr.Row():
|
| 105 |
+
with gr.Column():
|
| 106 |
+
model = gr.Radio(
|
| 107 |
+
choices=["tiny", "base", "small", "medium", "large"],
|
| 108 |
+
label="Whisper Model",
|
| 109 |
+
value="base"
|
| 110 |
+
)
|
| 111 |
+
gr.Markdown("""
|
| 112 |
+
- tiny: very fast, less accurate
|
| 113 |
+
- base: medium speed and accuracy
|
| 114 |
+
- small: balanced speed and accuracy
|
| 115 |
+
- medium: more accurate, slower
|
| 116 |
+
- large: most accurate, very slow
|
| 117 |
+
""")
|
| 118 |
+
|
| 119 |
+
input_type = gr.Radio(["YouTube URL", "Audio File"], label="Input Type")
|
| 120 |
+
youtube_url = gr.Textbox(label="YouTube URL")
|
| 121 |
+
audio_file = gr.Audio(label="Audio File", type="filepath")
|
| 122 |
+
|
| 123 |
+
with gr.Row():
|
| 124 |
+
submit_button = gr.Button("Submit")
|
| 125 |
+
clear_button = gr.Button("Clear")
|
| 126 |
+
|
| 127 |
+
with gr.Column():
|
| 128 |
+
output = gr.Textbox(label="Transcription", lines=25)
|
| 129 |
+
|
| 130 |
+
submit_button.click(
|
| 131 |
+
fn=process_input,
|
| 132 |
+
inputs=[model, input_type, youtube_url, audio_file],
|
| 133 |
+
outputs=output,
|
| 134 |
+
api_name="transcribe"
|
| 135 |
+
)
|
| 136 |
+
|
| 137 |
+
def clear_outputs():
|
| 138 |
+
return {youtube_url: "", audio_file: None, output: ""}
|
| 139 |
+
|
| 140 |
+
clear_button.click(
|
| 141 |
+
fn=clear_outputs,
|
| 142 |
+
inputs=[],
|
| 143 |
+
outputs=[youtube_url, audio_file, output],
|
| 144 |
+
api_name="clear"
|
| 145 |
+
)
|
| 146 |
+
|
| 147 |
+
# Launch the interface
|
| 148 |
+
iface.queue().launch(share=True)
|