import os import io from PIL import Image import base64 from transformers import pipeline import gradio as gr hf_api_key = os.environ['HF_API_KEY'] # Load the image-to-text pipeline with BLIP model get_completion = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base") def image_to_base64_str(pil_image): byte_arr = io.BytesIO() pil_image.save(byte_arr, format='PNG') byte_arr = byte_arr.getvalue() return str(base64.b64encode(byte_arr).decode('utf-8')) def captioner(image): # The BLIP model expects a PIL image directly result = get_completion(image) return result[0]['generated_text'] demo = gr.Interface(fn=captioner, inputs=[gr.Image(label="Upload image", type="pil")], outputs=[gr.Textbox(label="Caption")], title="Image Captioning with BLIP", description="Caption any image using the BLIP model", flagging_mode="never", # Updated from allow_flagging examples=["images/christmas_dog.jpg", "images/bird_flight.jpg", "images/cow.jpg"]) demo.launch( share=True, # server_port=int(os.environ.get('PORT3', 7860)) # Uncomment if needed )