chrisjcc commited on
Commit
fb1c063
·
verified ·
1 Parent(s): c2883ba

Minor code updates

Browse files
Files changed (1) hide show
  1. app.py +27 -25
app.py CHANGED
@@ -10,28 +10,7 @@ import gradio as gr
10
  hf_api_key = os.environ.get('HF_API_KEY')
11
  client = OpenAI() # Assumes OPENAI_API_KEY is set in environment
12
 
13
-
14
- class Agent:
15
- def __init__(self, system=""):
16
- self.system = system
17
- self.messages = []
18
- if self.system:
19
- self.messages.append({"role": "system", "content": system})
20
-
21
- def __call__(self, message):
22
- self.messages.append({"role": "user", "content": message})
23
- result = self.execute()
24
- self.messages.append({"role": "assistant", "content": result})
25
- return result
26
-
27
- def execute(self):
28
- completion = client.chat.completions.create(
29
- model="gpt-4o",
30
- temperature=0,
31
- messages=self.messages)
32
- return completion.choices[0].message.content
33
-
34
-
35
  prompt = """
36
  You run in a loop of Thought, Action, PAUSE, Observation.
37
  At the end of the loop you output an Answer
@@ -65,6 +44,27 @@ You then output:
65
  Answer: A bulldog weights 51 lbs
66
  """.strip()
67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68
  def calculate(what):
69
  return eval(what)
70
 
@@ -78,11 +78,13 @@ def average_dog_weight(name):
78
  else:
79
  return("An average dog weights 50 lbs")
80
 
 
81
  known_actions = {
82
  "calculate": calculate,
83
  "average_dog_weight": average_dog_weight
84
  }
85
 
 
86
  abot = Agent(prompt)
87
 
88
  result = abot("How much does a toy poodle weigh?")
@@ -98,6 +100,7 @@ abot(next_prompt)
98
 
99
  print(abot.messages)
100
 
 
101
  abot = Agent(prompt)
102
 
103
  question = """I have 2 dogs, a border collie and a scottish terrier. \
@@ -124,6 +127,7 @@ action_re = re.compile('^Action: (\w+): (.*)$') # python regular expression to
124
  @spaces.GPU(duration=120) # Designed to be effect-free in non-ZeroGPU environments, ensuring compatibility across different setups.
125
  def query(question, max_turns=5):
126
  i = 0
 
127
  bot = Agent(prompt)
128
  next_prompt = question
129
  while i < max_turns:
@@ -144,8 +148,6 @@ def query(question, max_turns=5):
144
  return result
145
  return "Max turns reached"
146
 
147
- #question = """I have 2 dogs, a border collie and a scottish terrier. What is their combined weight"""
148
- #query(question)
149
 
150
  # Gradio interface
151
  def process_question(question):
@@ -153,7 +155,7 @@ def process_question(question):
153
 
154
  iface = gr.Interface(
155
  fn=process_question,
156
- inputs=gr.Textbox(label="Enter your question"),
157
  outputs=gr.Textbox(label="Answer"),
158
  title="Dog Weight Calculator",
159
  description="Ask about dog weights or perform calculations."
 
10
  hf_api_key = os.environ.get('HF_API_KEY')
11
  client = OpenAI() # Assumes OPENAI_API_KEY is set in environment
12
 
13
+ # Default system prompt
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14
  prompt = """
15
  You run in a loop of Thought, Action, PAUSE, Observation.
16
  At the end of the loop you output an Answer
 
44
  Answer: A bulldog weights 51 lbs
45
  """.strip()
46
 
47
+ class Agent:
48
+ def __init__(self, system=""):
49
+ self.system = system
50
+ self.messages = []
51
+ if self.system:
52
+ self.messages.append({"role": "system", "content": system})
53
+
54
+ def __call__(self, message):
55
+ self.messages.append({"role": "user", "content": message})
56
+ result = self.execute()
57
+ self.messages.append({"role": "assistant", "content": result})
58
+ return result
59
+
60
+ def execute(self):
61
+ completion = client.chat.completions.create(
62
+ model="gpt-4o",
63
+ temperature=0,
64
+ messages=self.messages)
65
+ return completion.choices[0].message.content
66
+
67
+ # Tools
68
  def calculate(what):
69
  return eval(what)
70
 
 
78
  else:
79
  return("An average dog weights 50 lbs")
80
 
81
+ # Available actions
82
  known_actions = {
83
  "calculate": calculate,
84
  "average_dog_weight": average_dog_weight
85
  }
86
 
87
+ # First manual example, use of LLM agent answering a query
88
  abot = Agent(prompt)
89
 
90
  result = abot("How much does a toy poodle weigh?")
 
100
 
101
  print(abot.messages)
102
 
103
+ # Second manual example, use of LLM agent answering a query
104
  abot = Agent(prompt)
105
 
106
  question = """I have 2 dogs, a border collie and a scottish terrier. \
 
127
  @spaces.GPU(duration=120) # Designed to be effect-free in non-ZeroGPU environments, ensuring compatibility across different setups.
128
  def query(question, max_turns=5):
129
  i = 0
130
+ # Create agent based on default system prompt
131
  bot = Agent(prompt)
132
  next_prompt = question
133
  while i < max_turns:
 
148
  return result
149
  return "Max turns reached"
150
 
 
 
151
 
152
  # Gradio interface
153
  def process_question(question):
 
155
 
156
  iface = gr.Interface(
157
  fn=process_question,
158
+ inputs=gr.Textbox(label="Enter your question"), # e.g. I have 2 dogs, a border collie and a scottish terrier. What is their combined weight
159
  outputs=gr.Textbox(label="Answer"),
160
  title="Dog Weight Calculator",
161
  description="Ask about dog weights or perform calculations."