Commit
·
f0b69ef
0
Parent(s):
Initial deployment: GLiNER Large entity extractor with 70 labels
Browse files- README.md +62 -0
- app.py +170 -0
- requirements.txt +8 -0
README.md
ADDED
|
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: T9 Oracle Entity Extractor
|
| 3 |
+
emoji: 🔬
|
| 4 |
+
colorFrom: blue
|
| 5 |
+
colorTo: green
|
| 6 |
+
sdk: gradio
|
| 7 |
+
sdk_version: 4.44.0
|
| 8 |
+
app_file: app.py
|
| 9 |
+
pinned: false
|
| 10 |
+
license: mit
|
| 11 |
+
hardware: t4-small
|
| 12 |
+
---
|
| 13 |
+
|
| 14 |
+
# T9 Oracle Entity Extractor
|
| 15 |
+
|
| 16 |
+
**Zero-shot NER for Medical Device Technical Documentation**
|
| 17 |
+
|
| 18 |
+
This Space provides entity extraction using GLiNER Large (1.7GB) for technical documentation in the medical device domain.
|
| 19 |
+
|
| 20 |
+
## Features
|
| 21 |
+
|
| 22 |
+
- **70 Entity Labels** across 10 tiers
|
| 23 |
+
- **Zero-shot learning** - no training required
|
| 24 |
+
- **Medical device focus** - optimized for endoscope equipment, parts, specifications
|
| 25 |
+
- **Hardware:** NVIDIA T4 GPU for fast inference
|
| 26 |
+
|
| 27 |
+
## Entity Types
|
| 28 |
+
|
| 29 |
+
### Tier 1: Critical Identifiers
|
| 30 |
+
- part_number, component_name, manufacturer, model_number
|
| 31 |
+
|
| 32 |
+
### Tier 2: Specifications
|
| 33 |
+
- pressure, temperature, voltage, current, material, dimensions, flow_rate, power
|
| 34 |
+
|
| 35 |
+
### Tier 3: Standards & Compliance
|
| 36 |
+
- standard_reference (ISO, ASTM, EN, IEC, ANSI), certification, compliance
|
| 37 |
+
|
| 38 |
+
### Tier 4-10: Additional Labels
|
| 39 |
+
- Thread standards, geometry, documentation, operational parameters, manufacturing IDs, medical device specific, visual elements, quality & maintenance
|
| 40 |
+
|
| 41 |
+
## API Usage
|
| 42 |
+
|
| 43 |
+
```python
|
| 44 |
+
from gradio_client import Client
|
| 45 |
+
|
| 46 |
+
client = Client("YOUR_USERNAME/t9-oracle-gliner-entity-extractor")
|
| 47 |
+
|
| 48 |
+
text = "Part Number: A70002-2, Material: SS316L, Pressure: 60 psi"
|
| 49 |
+
result = client.predict(text, api_name="/extract")
|
| 50 |
+
print(result)
|
| 51 |
+
```
|
| 52 |
+
|
| 53 |
+
## Configuration
|
| 54 |
+
|
| 55 |
+
- **Model:** urchade/gliner_large-v2.1
|
| 56 |
+
- **GPU:** NVIDIA T4 (16GB VRAM)
|
| 57 |
+
- **Cost:** $0.60/hour (Persistent)
|
| 58 |
+
- **Max input:** 10,000 characters per request
|
| 59 |
+
|
| 60 |
+
## Project
|
| 61 |
+
|
| 62 |
+
Part of the T9 Oracle Knowledge Base Extraction System for Auto Sink medical device documentation.
|
app.py
ADDED
|
@@ -0,0 +1,170 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
T9 Oracle GLiNER Entity Extractor - HF Space Deployment
|
| 3 |
+
Gradio API endpoint for zero-shot NER with 70 medical device labels
|
| 4 |
+
|
| 5 |
+
Deployed on: Persistent T4 GPU
|
| 6 |
+
Model: urchade/gliner_large-v2.1 (1.7GB)
|
| 7 |
+
Cost: $0.60/hour
|
| 8 |
+
"""
|
| 9 |
+
|
| 10 |
+
import gradio as gr
|
| 11 |
+
import json
|
| 12 |
+
import logging
|
| 13 |
+
from typing import List, Dict
|
| 14 |
+
from gliner import GLiNER
|
| 15 |
+
|
| 16 |
+
logging.basicConfig(level=logging.INFO)
|
| 17 |
+
logger = logging.getLogger(__name__)
|
| 18 |
+
|
| 19 |
+
# 70 APPROVED ENTITY LABELS (from T9 configuration)
|
| 20 |
+
ENTITY_LABELS = [
|
| 21 |
+
# Tier 1: Critical Identifiers (4)
|
| 22 |
+
"part_number", "component_name", "manufacturer", "model_number",
|
| 23 |
+
# Tier 2: Specifications & Measurements (13)
|
| 24 |
+
"pressure", "temperature", "voltage", "current", "material",
|
| 25 |
+
"dimension", "weight", "volume", "flow_rate", "power",
|
| 26 |
+
"diameter", "length", "thickness",
|
| 27 |
+
# Tier 3: Standards & Compliance (4)
|
| 28 |
+
"standard_reference", "certification", "compliance", "safety_class",
|
| 29 |
+
# Tier 4: Geometry & Mechanical (11)
|
| 30 |
+
"thread_standard", "pipe_size", "tubing_size", "connector_type",
|
| 31 |
+
"surface_finish", "surface_treatment", "width", "height",
|
| 32 |
+
"tolerance", "hardness", "torque",
|
| 33 |
+
# Tier 5: Documentation (7)
|
| 34 |
+
"diagram_reference", "drawing_number", "procedure_number",
|
| 35 |
+
"test_protocol", "revision", "sku_number", "part_label",
|
| 36 |
+
# Tier 6: Operational Parameters (9)
|
| 37 |
+
"accuracy", "speed", "frequency", "resistance",
|
| 38 |
+
"operating_temperature", "supply_voltage", "response_time",
|
| 39 |
+
"duty_cycle", "operating_range",
|
| 40 |
+
# Tier 7: Manufacturing (8)
|
| 41 |
+
"operator_id", "tool_number", "gauge_id", "fixture_number",
|
| 42 |
+
"machine_id", "lot_number", "serial_number", "batch_id",
|
| 43 |
+
# Tier 8: Medical Device (7)
|
| 44 |
+
"medical_device", "scope_manufacturer", "channel_type",
|
| 45 |
+
"port_type", "hub_type", "color_code", "leak_test",
|
| 46 |
+
# Tier 9: Visual Elements (2)
|
| 47 |
+
"diagram_type", "technical_annotation",
|
| 48 |
+
# Tier 10: Quality & Maintenance (7)
|
| 49 |
+
"calibration_interval", "service_interval", "mtbf",
|
| 50 |
+
"warranty", "expiration_date", "production_date", "inspection_report"
|
| 51 |
+
]
|
| 52 |
+
|
| 53 |
+
# Load GLiNER model (runs once on Space startup)
|
| 54 |
+
logger.info("Loading GLiNER Large model (1.7GB)...")
|
| 55 |
+
model = GLiNER.from_pretrained("urchade/gliner_large-v2.1")
|
| 56 |
+
logger.info(f"✓ GLiNER loaded with {len(ENTITY_LABELS)} labels")
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
def extract_entities(text: str, max_length: int = 10000) -> str:
|
| 60 |
+
"""
|
| 61 |
+
Extract entities from text using GLiNER zero-shot NER
|
| 62 |
+
|
| 63 |
+
Args:
|
| 64 |
+
text: Input text (max 10,000 characters recommended)
|
| 65 |
+
max_length: Maximum text length per prediction
|
| 66 |
+
|
| 67 |
+
Returns:
|
| 68 |
+
JSON string with extracted entities
|
| 69 |
+
"""
|
| 70 |
+
if not text or not text.strip():
|
| 71 |
+
return json.dumps({"entities": [], "error": "Empty text provided"})
|
| 72 |
+
|
| 73 |
+
# Truncate if too long
|
| 74 |
+
if len(text) > max_length:
|
| 75 |
+
logger.warning(f"Text truncated from {len(text)} to {max_length} chars")
|
| 76 |
+
text = text[:max_length]
|
| 77 |
+
|
| 78 |
+
try:
|
| 79 |
+
# GLiNER prediction
|
| 80 |
+
predictions = model.predict_entities(text, ENTITY_LABELS)
|
| 81 |
+
|
| 82 |
+
# Format output
|
| 83 |
+
entities = []
|
| 84 |
+
for pred in predictions:
|
| 85 |
+
entities.append({
|
| 86 |
+
"text": pred.get("text", ""),
|
| 87 |
+
"label": pred.get("label", ""),
|
| 88 |
+
"start": pred.get("start", 0),
|
| 89 |
+
"end": pred.get("end", 0),
|
| 90 |
+
"score": float(pred.get("score", 0.0))
|
| 91 |
+
})
|
| 92 |
+
|
| 93 |
+
logger.info(f"Extracted {len(entities)} entities from {len(text)} chars")
|
| 94 |
+
|
| 95 |
+
return json.dumps({
|
| 96 |
+
"entities": entities,
|
| 97 |
+
"input_length": len(text),
|
| 98 |
+
"entity_count": len(entities),
|
| 99 |
+
"labels_used": len(ENTITY_LABELS)
|
| 100 |
+
}, indent=2)
|
| 101 |
+
|
| 102 |
+
except Exception as e:
|
| 103 |
+
logger.error(f"Extraction failed: {e}")
|
| 104 |
+
return json.dumps({"entities": [], "error": str(e)})
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
def batch_extract(text_batch: str) -> str:
|
| 108 |
+
"""
|
| 109 |
+
Extract entities from multiple texts (newline-separated)
|
| 110 |
+
|
| 111 |
+
Args:
|
| 112 |
+
text_batch: Multiple texts separated by double newlines
|
| 113 |
+
|
| 114 |
+
Returns:
|
| 115 |
+
JSON string with results for each text
|
| 116 |
+
"""
|
| 117 |
+
texts = [t.strip() for t in text_batch.split("\n\n") if t.strip()]
|
| 118 |
+
|
| 119 |
+
results = []
|
| 120 |
+
for i, text in enumerate(texts):
|
| 121 |
+
result_json = extract_entities(text)
|
| 122 |
+
result = json.loads(result_json)
|
| 123 |
+
result["text_index"] = i
|
| 124 |
+
results.append(result)
|
| 125 |
+
|
| 126 |
+
return json.dumps({"results": results, "batch_size": len(texts)}, indent=2)
|
| 127 |
+
|
| 128 |
+
|
| 129 |
+
# Create Gradio interface
|
| 130 |
+
demo = gr.Interface(
|
| 131 |
+
fn=extract_entities,
|
| 132 |
+
inputs=[
|
| 133 |
+
gr.Textbox(
|
| 134 |
+
lines=10,
|
| 135 |
+
placeholder="Enter technical text here (max 10,000 chars)...",
|
| 136 |
+
label="Input Text"
|
| 137 |
+
)
|
| 138 |
+
],
|
| 139 |
+
outputs=gr.JSON(label="Extracted Entities"),
|
| 140 |
+
title="T9 Oracle Entity Extractor (GLiNER Large)",
|
| 141 |
+
description=f"""
|
| 142 |
+
**Zero-shot NER for Medical Device Technical Documentation**
|
| 143 |
+
|
| 144 |
+
Extracts **{len(ENTITY_LABELS)} entity types** across 10 tiers:
|
| 145 |
+
- Part numbers, dimensions, materials, standards
|
| 146 |
+
- Electrical specs, pressure, temperature, flow rates
|
| 147 |
+
- Thread standards, tolerances, surface treatments
|
| 148 |
+
- Medical device specific (scopes, channels, colors)
|
| 149 |
+
- Quality & maintenance data
|
| 150 |
+
|
| 151 |
+
**Model:** GLiNER Large v2.1 (1.7GB)
|
| 152 |
+
**Hardware:** NVIDIA T4 GPU (16GB VRAM)
|
| 153 |
+
**Max input:** 10,000 characters per request
|
| 154 |
+
""",
|
| 155 |
+
examples=[
|
| 156 |
+
["Part Number: A70002-2, Material: SS316L, Pressure: 60 psi, Thread: 1/4\" NPT"],
|
| 157 |
+
["Standard: ISO 1179-2, ASTM A112, Temperature: -40 to 85°C, Dimension: 6mm x 35mm"],
|
| 158 |
+
["Manufacturer: Olympus, Channel: Biopsy, Color: Orange Tubing, Serial: SN-123456"]
|
| 159 |
+
],
|
| 160 |
+
api_name="extract", # Important: enables API access
|
| 161 |
+
allow_flagging="never"
|
| 162 |
+
)
|
| 163 |
+
|
| 164 |
+
# Launch with API enabled
|
| 165 |
+
if __name__ == "__main__":
|
| 166 |
+
demo.launch(
|
| 167 |
+
server_name="0.0.0.0",
|
| 168 |
+
server_port=7860,
|
| 169 |
+
share=False # HF Spaces handles sharing
|
| 170 |
+
)
|
requirements.txt
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# T9 Oracle GLiNER Entity Extractor - HF Space Dependencies
|
| 2 |
+
# Approved configuration from /tmp/entity_extraction_final_configuration.md
|
| 3 |
+
|
| 4 |
+
gliner==0.2.8
|
| 5 |
+
torch>=2.0.0
|
| 6 |
+
transformers>=4.30.0
|
| 7 |
+
gradio>=4.0.0
|
| 8 |
+
Pillow>=10.0.0
|