Update app.py
Browse files
app.py
CHANGED
|
@@ -24,8 +24,8 @@ os.makedirs(LR_path)
|
|
| 24 |
os.makedirs(Ref_path)
|
| 25 |
os.makedirs(Ref_path_T)
|
| 26 |
os.makedirs('result')
|
| 27 |
-
|
| 28 |
-
def resize(
|
| 29 |
#basewidth = max_side
|
| 30 |
#wpercent = (basewidth/float(img.size[0]))
|
| 31 |
#hsize = int((float(img.size[1])*float(wpercent)))
|
|
@@ -41,8 +41,8 @@ def resize(max_side,img):
|
|
| 41 |
return img
|
| 42 |
|
| 43 |
def inference(LR, Ref):
|
| 44 |
-
LR = resize(
|
| 45 |
-
Ref = resize(
|
| 46 |
|
| 47 |
LR.save(os.path.join(LR_path, '0000.png'))
|
| 48 |
Ref.save(os.path.join(Ref_path, '0000.png'))
|
|
@@ -68,8 +68,8 @@ description="Demo application for Reference-based Video Super-Resolution (RefVSR
|
|
| 68 |
|
| 69 |
article = "<p style='text-align: center'><b>To check the full capability of the module, we recommend to clone Github repository and run RefVSR models on videos using GPUs.</b></p><p style='text-align: center'>This demo runs on CPUs and only supports RefVSR for a single LR and Ref frame due to computational complexity. Hence, the model will not take advantage of temporal LR and Ref frames.</p><p style='text-align: center'>The model is the small-sized model trained with the proposed two-stage training strategy.</p><p style='text-align: center'>The frames will be resized so that the length of a longer side of the frames doesn't exceed 256 pixels.</p><p style='text-align: center'><a href='https://junyonglee.me/projects/RefVSR' target='_blank'>Project</a> | <a href='https://arxiv.org/abs/2203.14537' target='_blank'>arXiv</a> | <a href='https://github.com/codeslake/RefVSR' target='_blank'>Github</a></p>"
|
| 70 |
|
| 71 |
-
LR = resize(
|
| 72 |
-
Ref = resize(
|
| 73 |
LR.save('LR.png')
|
| 74 |
Ref.save('Ref.png')
|
| 75 |
|
|
|
|
| 24 |
os.makedirs(Ref_path)
|
| 25 |
os.makedirs(Ref_path_T)
|
| 26 |
os.makedirs('result')
|
| 27 |
+
max_side = 512
|
| 28 |
+
def resize(img):
|
| 29 |
#basewidth = max_side
|
| 30 |
#wpercent = (basewidth/float(img.size[0]))
|
| 31 |
#hsize = int((float(img.size[1])*float(wpercent)))
|
|
|
|
| 41 |
return img
|
| 42 |
|
| 43 |
def inference(LR, Ref):
|
| 44 |
+
LR = resize(LR)
|
| 45 |
+
Ref = resize(Ref)
|
| 46 |
|
| 47 |
LR.save(os.path.join(LR_path, '0000.png'))
|
| 48 |
Ref.save(os.path.join(Ref_path, '0000.png'))
|
|
|
|
| 68 |
|
| 69 |
article = "<p style='text-align: center'><b>To check the full capability of the module, we recommend to clone Github repository and run RefVSR models on videos using GPUs.</b></p><p style='text-align: center'>This demo runs on CPUs and only supports RefVSR for a single LR and Ref frame due to computational complexity. Hence, the model will not take advantage of temporal LR and Ref frames.</p><p style='text-align: center'>The model is the small-sized model trained with the proposed two-stage training strategy.</p><p style='text-align: center'>The frames will be resized so that the length of a longer side of the frames doesn't exceed 256 pixels.</p><p style='text-align: center'><a href='https://junyonglee.me/projects/RefVSR' target='_blank'>Project</a> | <a href='https://arxiv.org/abs/2203.14537' target='_blank'>arXiv</a> | <a href='https://github.com/codeslake/RefVSR' target='_blank'>Github</a></p>"
|
| 70 |
|
| 71 |
+
LR = resize(Image.open('LR.png'))
|
| 72 |
+
Ref = resize(Image.open('Ref.png'))
|
| 73 |
LR.save('LR.png')
|
| 74 |
Ref.save('Ref.png')
|
| 75 |
|