Spaces:
Build error
Build error
您的用户名
commited on
Commit
·
76dd601
1
Parent(s):
29543dc
Final attempt: Switch to robust PyTorch base image
Browse files- Dockerfile +16 -12
- main.py +10 -67
- requirements.txt +1 -0
Dockerfile
CHANGED
|
@@ -1,23 +1,27 @@
|
|
| 1 |
-
#
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
RUN apt-get update && apt-get install -y build-essential cmake
|
| 6 |
|
| 7 |
# 设置工作目录
|
| 8 |
WORKDIR /app
|
| 9 |
|
| 10 |
-
#
|
| 11 |
-
#
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
# 将requirements.txt复制到工作目录中
|
| 17 |
COPY requirements.txt .
|
| 18 |
|
| 19 |
-
#
|
| 20 |
-
|
|
|
|
|
|
|
| 21 |
|
| 22 |
# 将我们的API程序代码复制到工作目录中
|
| 23 |
COPY main.py .
|
|
|
|
| 1 |
+
# --- 核心修正点在这里 ---
|
| 2 |
+
# 我们不再使用简陋的python:3.10-slim
|
| 3 |
+
# 而是使用一个功能强大的、预装了所有编译工具和CUDA环境的官方PyTorch镜像
|
| 4 |
+
FROM pytorch/pytorch:2.1.0-cuda12.1-cudnn8-runtime
|
|
|
|
| 5 |
|
| 6 |
# 设置工作目录
|
| 7 |
WORKDIR /app
|
| 8 |
|
| 9 |
+
# 这个新环境里已经包含了所有编译工具,我们不再需要自己安装
|
| 10 |
+
# RUN apt-get update && apt-get install -y gcc g++ build-essential cmake
|
| 11 |
+
|
| 12 |
+
# 设置环境变量,确保pip的缓存路径拥有权限
|
| 13 |
+
# 这是解决所有权限问题的最终方案
|
| 14 |
+
ENV PIP_CACHE_DIR=/app/pip_cache
|
| 15 |
+
ENV HF_HOME=/app/huggingface_cache
|
| 16 |
+
RUN mkdir -p $PIP_CACHE_DIR $HF_HOME && chmod -R 777 $PIP_CACHE_DIR $HF_HOME
|
| 17 |
|
| 18 |
# 将requirements.txt复制到工作目录中
|
| 19 |
COPY requirements.txt .
|
| 20 |
|
| 21 |
+
# --- 第二个核心修正点 ---
|
| 22 |
+
# 我们在安装时,明确告诉pip使用我们创建的、拥有权限的缓存目录
|
| 23 |
+
# 这将彻底解决所有PermissionError
|
| 24 |
+
RUN pip install --no-cache-dir --cache-dir $PIP_CACHE_DIR -r requirements.txt
|
| 25 |
|
| 26 |
# 将我们的API程序代码复制到工作目录中
|
| 27 |
COPY main.py .
|
main.py
CHANGED
|
@@ -1,81 +1,36 @@
|
|
| 1 |
import os
|
| 2 |
-
import sys
|
| 3 |
-
import subprocess
|
| 4 |
import logging
|
| 5 |
from fastapi import FastAPI
|
| 6 |
from pydantic import BaseModel
|
| 7 |
-
|
| 8 |
-
# ================================================================
|
| 9 |
-
# 核心AI引擎的动态安装
|
| 10 |
-
# ================================================================
|
| 11 |
-
# 检查核心库是否存在,如果不存在,则在第一次运行时动态安装
|
| 12 |
-
try:
|
| 13 |
-
from llama_cpp import Llama
|
| 14 |
-
logging.info("核心AI引擎 (llama-cpp-python) 已安装。")
|
| 15 |
-
except ImportError:
|
| 16 |
-
logging.warning("核心AI引擎 (llama-cpp-python) 未找到,正在尝试动态安装...")
|
| 17 |
-
logging.warning("这个过程会极其缓慢 (预计15-25分钟),且只会执行一次。请耐心等待日志完成。")
|
| 18 |
-
try:
|
| 19 |
-
# 使用subprocess来执行pip安装命令
|
| 20 |
-
# 我们将安装目标指定到一个拥有写入权限的本地目录
|
| 21 |
-
install_path = "/app/pip_packages"
|
| 22 |
-
os.makedirs(install_path, exist_ok=True)
|
| 23 |
-
# 将这个路径添加到Python的搜索路径中
|
| 24 |
-
sys.path.append(install_path)
|
| 25 |
-
subprocess.check_call([
|
| 26 |
-
sys.executable, "-m", "pip", "install",
|
| 27 |
-
f"--target={install_path}",
|
| 28 |
-
"llama-cpp-python"
|
| 29 |
-
])
|
| 30 |
-
logging.info("核心AI引擎动态安装成功!正在重新导入...")
|
| 31 |
-
# 重新导入
|
| 32 |
-
from llama_cpp import Llama
|
| 33 |
-
except Exception as e:
|
| 34 |
-
logging.error(f"动态安装核心AI引擎失败!错误: {e}")
|
| 35 |
-
# 如果安装失败,设置一个标志,让API返回错误
|
| 36 |
-
Llama = None
|
| 37 |
-
|
| 38 |
from huggingface_hub import hf_hub_download
|
| 39 |
|
| 40 |
-
#
|
| 41 |
-
# 最终的main.py代码
|
| 42 |
-
# ================================================================
|
| 43 |
app = FastAPI()
|
| 44 |
|
| 45 |
-
#
|
| 46 |
-
# 我们从7B模型切换到更轻量级的4B模型,以适应16GB的内存限制
|
| 47 |
MODEL_ID = "Qwen/Qwen1.5-4B-Chat-GGUF"
|
| 48 |
-
# 同时,我们也选择这个模型对应的量化版本
|
| 49 |
MODEL_FILE = "qwen1_5-4b-chat-q5_k_m.gguf"
|
| 50 |
|
|
|
|
| 51 |
llm = None
|
| 52 |
|
|
|
|
| 53 |
@app.on_event("startup")
|
| 54 |
def load_model():
|
| 55 |
global llm
|
| 56 |
-
if Llama is None:
|
| 57 |
-
logging.error("核心AI引擎未能加载,API将不可用。")
|
| 58 |
-
return
|
| 59 |
-
|
| 60 |
logging.info("正在CPU上使用 llama-cpp-python 加载GGUF模型...")
|
| 61 |
logging.info(f"目标模型: {MODEL_ID}/{MODEL_FILE}")
|
| 62 |
try:
|
| 63 |
-
|
| 64 |
-
model_path = hf_hub_download(
|
| 65 |
-
repo_id=MODEL_ID,
|
| 66 |
-
filename=MODEL_FILE
|
| 67 |
-
)
|
| 68 |
logging.info(f"模型已成功下载到: {model_path}")
|
| 69 |
-
|
| 70 |
-
# 2. 使用llama-cpp-python加载模型
|
| 71 |
llm = Llama(
|
| 72 |
model_path=model_path,
|
| 73 |
-
n_ctx=4096,
|
| 74 |
-
n_threads=2,
|
| 75 |
-
n_gpu_layers=0
|
| 76 |
)
|
| 77 |
logging.info("AI模型加载成功!API已准备就绪。")
|
| 78 |
-
|
| 79 |
except Exception as e:
|
| 80 |
logging.error(f"!!!!!!!!!!!!!! 模型加载失败 !!!!!!!!!!!!!!")
|
| 81 |
logging.error(f"错误类型: {type(e).__name__}")
|
|
@@ -90,23 +45,12 @@ class ChatCompletionRequest(BaseModel):
|
|
| 90 |
def chat_completions(request: ChatCompletionRequest):
|
| 91 |
if llm is None:
|
| 92 |
return {"error": "模型未能成功加载,API不可用。请检查Space日志。"}
|
| 93 |
-
|
| 94 |
-
# llama-cpp-python直接接收OpenAI格式的messages
|
| 95 |
messages = request.messages
|
| 96 |
-
|
| 97 |
try:
|
| 98 |
logging.info("正在生成回复...")
|
| 99 |
-
|
| 100 |
-
completion = llm.create_chat_completion(
|
| 101 |
-
messages=messages,
|
| 102 |
-
max_tokens=2048,
|
| 103 |
-
temperature=0.7
|
| 104 |
-
)
|
| 105 |
logging.info("回复生成成功!")
|
| 106 |
-
|
| 107 |
-
# 直接返回OpenAI兼容的格式
|
| 108 |
return completion
|
| 109 |
-
|
| 110 |
except Exception as e:
|
| 111 |
logging.error(f"生成回复时出错: {e}")
|
| 112 |
return {"error": "生成回复时遇到内部错误。"}
|
|
@@ -118,5 +62,4 @@ def read_root():
|
|
| 118 |
else:
|
| 119 |
return {"status": "Prometheus Qwen API is running, but model failed to load."}
|
| 120 |
|
| 121 |
-
# 在主脚本的开头初始化日志
|
| 122 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
|
|
|
| 1 |
import os
|
|
|
|
|
|
|
| 2 |
import logging
|
| 3 |
from fastapi import FastAPI
|
| 4 |
from pydantic import BaseModel
|
| 5 |
+
from llama_cpp import Llama
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
from huggingface_hub import hf_hub_download
|
| 7 |
|
| 8 |
+
# 初始化FastAPI应用
|
|
|
|
|
|
|
| 9 |
app = FastAPI()
|
| 10 |
|
| 11 |
+
# 定义模型ID和文件名
|
|
|
|
| 12 |
MODEL_ID = "Qwen/Qwen1.5-4B-Chat-GGUF"
|
|
|
|
| 13 |
MODEL_FILE = "qwen1_5-4b-chat-q5_k_m.gguf"
|
| 14 |
|
| 15 |
+
# 全局变量来存储模型
|
| 16 |
llm = None
|
| 17 |
|
| 18 |
+
# 在应用启动时加载模型
|
| 19 |
@app.on_event("startup")
|
| 20 |
def load_model():
|
| 21 |
global llm
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
logging.info("正在CPU上使用 llama-cpp-python 加载GGUF模型...")
|
| 23 |
logging.info(f"目标模型: {MODEL_ID}/{MODEL_FILE}")
|
| 24 |
try:
|
| 25 |
+
model_path = hf_hub_download(repo_id=MODEL_ID, filename=MODEL_FILE)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
logging.info(f"模型已成功下载到: {model_path}")
|
|
|
|
|
|
|
| 27 |
llm = Llama(
|
| 28 |
model_path=model_path,
|
| 29 |
+
n_ctx=4096,
|
| 30 |
+
n_threads=2,
|
| 31 |
+
n_gpu_layers=0
|
| 32 |
)
|
| 33 |
logging.info("AI模型加载成功!API已准备就绪。")
|
|
|
|
| 34 |
except Exception as e:
|
| 35 |
logging.error(f"!!!!!!!!!!!!!! 模型加载失败 !!!!!!!!!!!!!!")
|
| 36 |
logging.error(f"错误类型: {type(e).__name__}")
|
|
|
|
| 45 |
def chat_completions(request: ChatCompletionRequest):
|
| 46 |
if llm is None:
|
| 47 |
return {"error": "模型未能成功加载,API不可用。请检查Space日志。"}
|
|
|
|
|
|
|
| 48 |
messages = request.messages
|
|
|
|
| 49 |
try:
|
| 50 |
logging.info("正在生成回复...")
|
| 51 |
+
completion = llm.create_chat_completion(messages=messages, max_tokens=2048, temperature=0.7)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
logging.info("回复生成成功!")
|
|
|
|
|
|
|
| 53 |
return completion
|
|
|
|
| 54 |
except Exception as e:
|
| 55 |
logging.error(f"生成回复时出错: {e}")
|
| 56 |
return {"error": "生成回复时遇到内部错误。"}
|
|
|
|
| 62 |
else:
|
| 63 |
return {"status": "Prometheus Qwen API is running, but model failed to load."}
|
| 64 |
|
|
|
|
| 65 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
requirements.txt
CHANGED
|
@@ -1,4 +1,5 @@
|
|
| 1 |
fastapi
|
| 2 |
uvicorn
|
|
|
|
| 3 |
pydantic
|
| 4 |
huggingface-hub
|
|
|
|
| 1 |
fastapi
|
| 2 |
uvicorn
|
| 3 |
+
llama-cpp-python
|
| 4 |
pydantic
|
| 5 |
huggingface-hub
|