Spaces:
Build error
Build error
您的用户名
commited on
Commit
·
b53c3a8
1
Parent(s):
9ae7eaa
Final fix: Switch to lighter 4B model to fit in memory
Browse files
main.py
CHANGED
|
@@ -6,7 +6,7 @@ from fastapi import FastAPI
|
|
| 6 |
from pydantic import BaseModel
|
| 7 |
|
| 8 |
# ================================================================
|
| 9 |
-
#
|
| 10 |
# ================================================================
|
| 11 |
# 检查核心库是否存在,如果不存在,则在第一次运行时动态安装
|
| 12 |
try:
|
|
@@ -17,7 +17,16 @@ except ImportError:
|
|
| 17 |
logging.warning("这个过程会极其缓慢 (预计15-25分钟),且只会执行一次。请耐心等待日志完成。")
|
| 18 |
try:
|
| 19 |
# 使用subprocess来执行pip安装命令
|
| 20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
logging.info("核心AI引擎动态安装成功!正在重新导入...")
|
| 22 |
# 重新导入
|
| 23 |
from llama_cpp import Llama
|
|
@@ -29,11 +38,16 @@ except ImportError:
|
|
| 29 |
from huggingface_hub import hf_hub_download
|
| 30 |
|
| 31 |
# ================================================================
|
| 32 |
-
#
|
| 33 |
# ================================================================
|
| 34 |
app = FastAPI()
|
| 35 |
-
|
| 36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
llm = None
|
| 38 |
|
| 39 |
@app.on_event("startup")
|
|
@@ -44,17 +58,24 @@ def load_model():
|
|
| 44 |
return
|
| 45 |
|
| 46 |
logging.info("正在CPU上使用 llama-cpp-python 加载GGUF模型...")
|
| 47 |
-
logging.info("
|
| 48 |
try:
|
| 49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
logging.info(f"模型已成功下载到: {model_path}")
|
|
|
|
|
|
|
| 51 |
llm = Llama(
|
| 52 |
model_path=model_path,
|
| 53 |
-
n_ctx=4096,
|
| 54 |
-
n_threads=2,
|
| 55 |
-
n_gpu_layers=0
|
| 56 |
)
|
| 57 |
logging.info("AI模型加载成功!API已准备就绪。")
|
|
|
|
| 58 |
except Exception as e:
|
| 59 |
logging.error(f"!!!!!!!!!!!!!! 模型加载失败 !!!!!!!!!!!!!!")
|
| 60 |
logging.error(f"错误类型: {type(e).__name__}")
|
|
@@ -69,13 +90,23 @@ class ChatCompletionRequest(BaseModel):
|
|
| 69 |
def chat_completions(request: ChatCompletionRequest):
|
| 70 |
if llm is None:
|
| 71 |
return {"error": "模型未能成功加载,API不可用。请检查Space日志。"}
|
|
|
|
|
|
|
| 72 |
messages = request.messages
|
|
|
|
| 73 |
try:
|
| 74 |
logging.info("正在生成回复...")
|
| 75 |
-
|
| 76 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
logging.info("回复生成成功!")
|
|
|
|
|
|
|
| 78 |
return completion
|
|
|
|
| 79 |
except Exception as e:
|
| 80 |
logging.error(f"生成回复时出错: {e}")
|
| 81 |
return {"error": "生成回复时遇到内部错误。"}
|
|
|
|
| 6 |
from pydantic import BaseModel
|
| 7 |
|
| 8 |
# ================================================================
|
| 9 |
+
# 核心AI引擎的动态安装
|
| 10 |
# ================================================================
|
| 11 |
# 检查核心库是否存在,如果不存在,则在第一次运行时动态安装
|
| 12 |
try:
|
|
|
|
| 17 |
logging.warning("这个过程会极其缓慢 (预计15-25分钟),且只会执行一次。请耐心等待日志完成。")
|
| 18 |
try:
|
| 19 |
# 使用subprocess来执行pip安装命令
|
| 20 |
+
# 我们将安装目标指定到一个拥有写入权限的本地目录
|
| 21 |
+
install_path = "/app/pip_packages"
|
| 22 |
+
os.makedirs(install_path, exist_ok=True)
|
| 23 |
+
# 将这个路径添加到Python的搜索路径中
|
| 24 |
+
sys.path.append(install_path)
|
| 25 |
+
subprocess.check_call([
|
| 26 |
+
sys.executable, "-m", "pip", "install",
|
| 27 |
+
f"--target={install_path}",
|
| 28 |
+
"llama-cpp-python"
|
| 29 |
+
])
|
| 30 |
logging.info("核心AI引擎动态安装成功!正在重新导入...")
|
| 31 |
# 重新导入
|
| 32 |
from llama_cpp import Llama
|
|
|
|
| 38 |
from huggingface_hub import hf_hub_download
|
| 39 |
|
| 40 |
# ================================================================
|
| 41 |
+
# 最终的main.py代码
|
| 42 |
# ================================================================
|
| 43 |
app = FastAPI()
|
| 44 |
+
|
| 45 |
+
# --- 核心修正点在这里 ---
|
| 46 |
+
# 我们从7B模型切换到更轻量级的4B模型,以适应16GB的内存限制
|
| 47 |
+
MODEL_ID = "Qwen/Qwen1.5-4B-Chat-GGUF"
|
| 48 |
+
# 同时,我们也选择这个模型对应的量化版本
|
| 49 |
+
MODEL_FILE = "qwen1_5-4b-chat-q5_k_m.gguf"
|
| 50 |
+
|
| 51 |
llm = None
|
| 52 |
|
| 53 |
@app.on_event("startup")
|
|
|
|
| 58 |
return
|
| 59 |
|
| 60 |
logging.info("正在CPU上使用 llama-cpp-python 加载GGUF模型...")
|
| 61 |
+
logging.info(f"目标模型: {MODEL_ID}/{MODEL_FILE}")
|
| 62 |
try:
|
| 63 |
+
# 1. 从Hugging Face Hub下载模型文件到本地缓存
|
| 64 |
+
model_path = hf_hub_download(
|
| 65 |
+
repo_id=MODEL_ID,
|
| 66 |
+
filename=MODEL_FILE
|
| 67 |
+
)
|
| 68 |
logging.info(f"模型已成功下载到: {model_path}")
|
| 69 |
+
|
| 70 |
+
# 2. 使用llama-cpp-python加载模型
|
| 71 |
llm = Llama(
|
| 72 |
model_path=model_path,
|
| 73 |
+
n_ctx=4096, # 上下文长度
|
| 74 |
+
n_threads=2, # 使用CPU核心数,对于免费版2核CPU是最佳设置
|
| 75 |
+
n_gpu_layers=0 # 明确指定在CPU上运行
|
| 76 |
)
|
| 77 |
logging.info("AI模型加载成功!API已准备就绪。")
|
| 78 |
+
|
| 79 |
except Exception as e:
|
| 80 |
logging.error(f"!!!!!!!!!!!!!! 模型加载失败 !!!!!!!!!!!!!!")
|
| 81 |
logging.error(f"错误类型: {type(e).__name__}")
|
|
|
|
| 90 |
def chat_completions(request: ChatCompletionRequest):
|
| 91 |
if llm is None:
|
| 92 |
return {"error": "模型未能成功加载,API不可用。请检查Space日志。"}
|
| 93 |
+
|
| 94 |
+
# llama-cpp-python直接接收OpenAI格式的messages
|
| 95 |
messages = request.messages
|
| 96 |
+
|
| 97 |
try:
|
| 98 |
logging.info("正在生成回复...")
|
| 99 |
+
# 直接调用create_chat_completion
|
| 100 |
+
completion = llm.create_chat_completion(
|
| 101 |
+
messages=messages,
|
| 102 |
+
max_tokens=2048,
|
| 103 |
+
temperature=0.7
|
| 104 |
+
)
|
| 105 |
logging.info("回复生成成功!")
|
| 106 |
+
|
| 107 |
+
# 直接返回OpenAI兼容的格式
|
| 108 |
return completion
|
| 109 |
+
|
| 110 |
except Exception as e:
|
| 111 |
logging.error(f"生成回复时出错: {e}")
|
| 112 |
return {"error": "生成回复时遇到内部错误。"}
|