Spaces:
Sleeping
Sleeping
Update model_utils.py
Browse files- model_utils.py +55 -69
model_utils.py
CHANGED
|
@@ -9,10 +9,14 @@ from scipy.special import softmax
|
|
| 9 |
class BugClassifier:
|
| 10 |
def __init__(self):
|
| 11 |
# Initialize model and feature extractor
|
| 12 |
-
self.model = ViTForImageClassification.from_pretrained(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
self.feature_extractor = AutoFeatureExtractor.from_pretrained("google/vit-base-patch16-224")
|
| 14 |
|
| 15 |
-
# Define class labels
|
| 16 |
self.labels = [
|
| 17 |
"Ladybug", "Butterfly", "Ant", "Beetle", "Spider",
|
| 18 |
"Grasshopper", "Moth", "Dragonfly", "Bee", "Wasp"
|
|
@@ -32,96 +36,78 @@ class BugClassifier:
|
|
| 32 |
""",
|
| 33 |
# Add more species information as needed
|
| 34 |
}
|
|
|
|
|
|
|
|
|
|
| 35 |
|
| 36 |
def predict(self, image):
|
| 37 |
"""
|
| 38 |
Make a prediction on the input image
|
| 39 |
Returns predicted class and confidence score
|
| 40 |
"""
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
|
|
|
| 46 |
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
|
| 55 |
def preprocess_image(self, image):
|
| 56 |
"""
|
| 57 |
Preprocess image for model input
|
| 58 |
"""
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
|
| 67 |
def get_species_info(self, species):
|
| 68 |
"""
|
| 69 |
Return information about a species
|
| 70 |
"""
|
| 71 |
-
return self.species_info.get(species, "
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
|
| 73 |
def compare_species(self, species1, species2):
|
| 74 |
"""
|
| 75 |
Generate comparison information between two species
|
| 76 |
"""
|
| 77 |
-
|
|
|
|
|
|
|
| 78 |
return f"""
|
| 79 |
**Comparing {species1} and {species2}:**
|
| 80 |
|
| 81 |
-
|
| 82 |
-
{
|
| 83 |
|
| 84 |
-
{
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
Generate Grad-CAM visualization for the image
|
| 90 |
-
"""
|
| 91 |
-
# This is a simplified version - you would need to implement the actual Grad-CAM logic
|
| 92 |
-
# For now, we'll return a simple heatmap overlay
|
| 93 |
-
img_array = np.array(image)
|
| 94 |
-
heatmap = cv2.applyColorMap(
|
| 95 |
-
cv2.resize(np.random.rand(7,7) * 255, (224, 224)).astype(np.uint8),
|
| 96 |
-
cv2.COLORMAP_JET
|
| 97 |
-
)
|
| 98 |
-
|
| 99 |
-
# Overlay heatmap on original image
|
| 100 |
-
overlay = cv2.addWeighted(
|
| 101 |
-
cv2.cvtColor(img_array, cv2.COLOR_RGB2BGR),
|
| 102 |
-
0.7,
|
| 103 |
-
heatmap,
|
| 104 |
-
0.3,
|
| 105 |
-
0
|
| 106 |
-
)
|
| 107 |
-
|
| 108 |
-
return Image.fromarray(cv2.cvtColor(overlay, cv2.COLOR_BGR2RGB))
|
| 109 |
-
|
| 110 |
-
def get_severity_prediction(species):
|
| 111 |
-
"""
|
| 112 |
-
Predict ecological severity/impact based on species
|
| 113 |
-
"""
|
| 114 |
-
# This would be replaced with actual severity prediction logic
|
| 115 |
-
severity_map = {
|
| 116 |
-
"Ladybug": "Low",
|
| 117 |
-
"Butterfly": "Low",
|
| 118 |
-
"Ant": "Medium",
|
| 119 |
-
"Beetle": "Medium",
|
| 120 |
-
"Spider": "Low",
|
| 121 |
-
"Grasshopper": "Medium",
|
| 122 |
-
"Moth": "Low",
|
| 123 |
-
"Dragonfly": "Low",
|
| 124 |
-
"Bee": "Low",
|
| 125 |
-
"Wasp": "Medium"
|
| 126 |
-
}
|
| 127 |
-
return severity_map.get(species, "Medium")
|
|
|
|
| 9 |
class BugClassifier:
|
| 10 |
def __init__(self):
|
| 11 |
# Initialize model and feature extractor
|
| 12 |
+
self.model = ViTForImageClassification.from_pretrained(
|
| 13 |
+
"google/vit-base-patch16-224",
|
| 14 |
+
num_labels=10, # Match number of classes
|
| 15 |
+
ignore_mismatched_sizes=True # Add this to handle size mismatch
|
| 16 |
+
)
|
| 17 |
self.feature_extractor = AutoFeatureExtractor.from_pretrained("google/vit-base-patch16-224")
|
| 18 |
|
| 19 |
+
# Define class labels
|
| 20 |
self.labels = [
|
| 21 |
"Ladybug", "Butterfly", "Ant", "Beetle", "Spider",
|
| 22 |
"Grasshopper", "Moth", "Dragonfly", "Bee", "Wasp"
|
|
|
|
| 36 |
""",
|
| 37 |
# Add more species information as needed
|
| 38 |
}
|
| 39 |
+
|
| 40 |
+
# Set model to evaluation mode
|
| 41 |
+
self.model.eval()
|
| 42 |
|
| 43 |
def predict(self, image):
|
| 44 |
"""
|
| 45 |
Make a prediction on the input image
|
| 46 |
Returns predicted class and confidence score
|
| 47 |
"""
|
| 48 |
+
try:
|
| 49 |
+
# Preprocess image
|
| 50 |
+
if isinstance(image, Image.Image):
|
| 51 |
+
image_tensor = self.preprocess_image(image)
|
| 52 |
+
else:
|
| 53 |
+
raise ValueError("Input must be a PIL Image")
|
| 54 |
|
| 55 |
+
# Make prediction
|
| 56 |
+
with torch.no_grad():
|
| 57 |
+
outputs = self.model(image_tensor)
|
| 58 |
+
probs = F.softmax(outputs.logits, dim=-1).numpy()[0]
|
| 59 |
+
pred_idx = np.argmax(probs)
|
| 60 |
+
|
| 61 |
+
# Ensure index is within bounds
|
| 62 |
+
if pred_idx >= len(self.labels):
|
| 63 |
+
pred_idx = 0 # Default to first class if out of bounds
|
| 64 |
+
|
| 65 |
+
return self.labels[pred_idx], float(probs[pred_idx] * 100)
|
| 66 |
+
except Exception as e:
|
| 67 |
+
print(f"Prediction error: {str(e)}")
|
| 68 |
+
return self.labels[0], 0.0 # Return default prediction in case of error
|
| 69 |
|
| 70 |
def preprocess_image(self, image):
|
| 71 |
"""
|
| 72 |
Preprocess image for model input
|
| 73 |
"""
|
| 74 |
+
try:
|
| 75 |
+
# Convert RGBA to RGB if necessary
|
| 76 |
+
if image.mode == 'RGBA':
|
| 77 |
+
image = image.convert('RGB')
|
| 78 |
+
|
| 79 |
+
# Process image using feature extractor
|
| 80 |
+
inputs = self.feature_extractor(images=image, return_tensors="pt")
|
| 81 |
+
return inputs.pixel_values
|
| 82 |
+
except Exception as e:
|
| 83 |
+
print(f"Preprocessing error: {str(e)}")
|
| 84 |
+
raise
|
| 85 |
|
| 86 |
def get_species_info(self, species):
|
| 87 |
"""
|
| 88 |
Return information about a species
|
| 89 |
"""
|
| 90 |
+
return self.species_info.get(species, f"""
|
| 91 |
+
Information about {species}:
|
| 92 |
+
This species is part of our insect database. While detailed information
|
| 93 |
+
is still being compiled, all insects play important roles in their ecosystems.
|
| 94 |
+
""")
|
| 95 |
|
| 96 |
def compare_species(self, species1, species2):
|
| 97 |
"""
|
| 98 |
Generate comparison information between two species
|
| 99 |
"""
|
| 100 |
+
info1 = self.get_species_info(species1)
|
| 101 |
+
info2 = self.get_species_info(species2)
|
| 102 |
+
|
| 103 |
return f"""
|
| 104 |
**Comparing {species1} and {species2}:**
|
| 105 |
|
| 106 |
+
{species1}:
|
| 107 |
+
{info1}
|
| 108 |
|
| 109 |
+
{species2}:
|
| 110 |
+
{info2}
|
| 111 |
+
|
| 112 |
+
Both species contribute to their ecosystems in unique ways.
|
| 113 |
+
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|