File size: 28,560 Bytes
a72a986
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c8548d2
a72a986
b5953e8
2ca406d
a72a986
429321a
6a855de
 
b5953e8
a72a986
2ca406d
ef44cbd
 
429321a
 
 
 
58b95fb
a72a986
61b0c72
a72a986
bab9948
a72a986
bab9948
429321a
 
c8548d2
bab9948
c8548d2
 
 
 
bab9948
c8548d2
 
 
 
bab9948
 
 
 
 
 
 
ef44cbd
 
 
bab9948
ef44cbd
 
 
c8548d2
bab9948
 
c8548d2
 
 
bab9948
c8548d2
 
 
 
 
bab9948
c8548d2
bab9948
c8548d2
 
 
a72a986
9370c28
 
 
 
bab9948
057d703
 
a72a986
9370c28
 
 
a72a986
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9370c28
 
 
 
0643cba
9370c28
 
 
ef44cbd
a72a986
 
bab9948
 
 
9370c28
a72a986
 
0643cba
 
 
 
a72a986
 
 
 
 
b62eb97
a72a986
 
 
 
 
 
 
b62eb97
a72a986
 
 
 
 
 
 
 
 
bab9948
a72a986
 
 
 
 
 
 
5e932f3
 
bab9948
5e932f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef44cbd
7f46aae
 
ef44cbd
5e932f3
 
ef44cbd
7f46aae
 
c8548d2
5e932f3
bab9948
5e932f3
 
429321a
 
bab9948
838df6a
ef44cbd
429321a
5e932f3
bab9948
838df6a
6a855de
 
429321a
6a855de
 
429321a
6a855de
9370c28
429321a
9370c28
2ca406d
 
 
 
 
9cbe537
 
2ca406d
 
3942403
 
9cbe537
429321a
9cbe537
2ca406d
 
 
bab9948
d8544e5
 
 
 
a72a986
 
 
 
bab9948
b233450
 
96f54ff
b233450
 
 
 
6a855de
b233450
6a855de
b233450
 
 
96f54ff
b233450
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16b6488
 
b233450
96f54ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3253581
6a855de
96f54ff
 
 
 
 
 
 
 
3253581
6605bc9
66f84dc
 
 
 
 
 
 
 
 
 
6605bc9
6a855de
 
aa88d79
057d703
 
 
 
429321a
 
6a855de
429321a
ef44cbd
 
5e932f3
ef44cbd
5e932f3
 
66f84dc
6a855de
66f84dc
6a855de
7f46aae
6a855de
7f46aae
6a855de
 
 
 
 
3253581
9f2fc80
7f46aae
 
 
a72a986
 
057d703
 
 
 
a72a986
122b132
a72a986
429321a
6a855de
 
 
 
429321a
 
ef44cbd
 
5e932f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
429321a
a72a986
 
057d703
 
 
 
a72a986
 
 
 
 
76f65c9
ef44cbd
 
c8548d2
ef44cbd
 
c8548d2
ef44cbd
 
c8548d2
429321a
c8548d2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# ==========================================================================
#         ____                   __       _          _____ ____ ____
#        |  _ \  ___  ___ _ __  / _| __ _| | _____  | ____/ ___/ ___|
#        | | | |/ _ \/ _ \ '_ \| |_ / _` | |/ / _ \ |  _|| |  | |  _
#        | |_| |  __/  __/ |_) |  _| (_| |   <  __/ | |__| |__| |_| |
#        |____/ \___|\___| .__/|_|  \__,_|_|\_\___| |_____\____\____|
#                        |_|
#
#                       --- Deepfake ECG Generator ---
#                https://github.com/vlbthambawita/deepfake-ecg
# ==========================================================================
#
# DeepfakeECG GUI Application
# Copyright (C) 2023-2025 by Vajira Thambawita
# Copyright (C) 2025 by Thomas Dreibholz
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.

# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
# Contact:
# * Vajira Thambawita <[email protected]>
# * Thomas Dreibholz <[email protected]>

import datetime
import deepfakeecg
import ecg_plot
import getopt
import gradio
import io
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import matplotlib.ticker
import neurokit2
import numpy
import pathlib
import random
import sys
import tempfile
import threading
import torch
import typing
import version
import PIL
import PIL.Image

from typing import Any, Final


# ###### Print log message ##################################################
def log(logstring : str) -> None:
   print(('\x1b[34m' + datetime.datetime.now().strftime('%Y-%m-%dT%H:%M:%S') +
          ': ' + logstring + '\x1b[0m'));



# ###### DeepFakeECG Plus Session (session with web browser) ################
class Session:

   # ###### Constructor #####################################################
   def __init__(self) -> None:
      self.Lock   = threading.Lock()
      self.Counter  : int       = 0
      self.Selected : int       = 0
      self.Results  : list[Any] = [ ]
      self.Type                 = None
      self.TempDirectory        = tempfile.TemporaryDirectory(dir = TempDirectory.name)
      log(f'Prepared temporary directory {self.TempDirectory.name}')

   # ###### Destructor ######################################################
   def __del__(self) -> None:
      log(f'Cleaning up temporary directory {self.TempDirectory.name}')
      self.TempDirectory.cleanup()


TempDirectory : tempfile.TemporaryDirectory[Any]
Sessions      : dict[str,Session] = { }


# ###### Initialize a new session ###########################################
def initializeSession(request: gradio.Request) -> None:
   Sessions[request.session_hash] = Session()
   log(f'Session "{request.session_hash}" initialized')


# ###### Clean up a session #################################################
def cleanUpSession(request: gradio.Request) -> None:
   if request.session_hash in Sessions:
      del Sessions[request.session_hash]
   log(f'Session "{request.session_hash}" cleaned up')


# ###### Generate ECGs ######################################################
def predict(numberOfECGs:         int = 1,
            # ecgLengthInSeconds: int = 10,
            ecgTypeString:        str = 'ECG-12',
            generatorModel:       str = 'Default',
            request:              gradio.Request = None) -> list[tuple[PIL.Image.Image,str]]:

   ecgLengthInSeconds = 10

   log(f'Session "{request.session_hash}": Generate EGCs!')


   # ====== Set ECG type ====================================================
   ecgType = deepfakeecg.DATA_ECG12
   if ecgTypeString == 'ECG-8':
      ecgType = deepfakeecg.DATA_ECG8
   elif ecgTypeString == 'ECG-12':
      ecgType = deepfakeecg.DATA_ECG12
   else:
      sys.stderr.write(f'WARNING: Invalid ecgTypeString {ecgTypeString}, using ECG-12!\n')

   # ====== Raise Locator.MAXTICKS, if necessary ============================
   matplotlib.ticker.Locator.MAXTICKS = \
       max(1000, ecgLengthInSeconds * deepfakeecg.ECG_SAMPLING_RATE)
   # print(matplotlib.ticker.Locator.MAXTICKS)

   # ====== Generate the ECGs ===============================================
   Sessions[request.session_hash].Results = \
      deepfakeecg.generateDeepfakeECGs(numberOfECGs,
                                       ecgType            = ecgType,
                                       ecgLengthInSeconds = ecgLengthInSeconds,
                                       ecgScaleFactor     = deepfakeecg.ECG_DEFAULT_SCALE_FACTOR,
                                       outputFormat       = deepfakeecg.OUTPUT_TENSOR,
                                       showProgress       = False,
                                       runOnDevice        = runOnDevice)
   Sessions[request.session_hash].Type = ecgType

   # ====== Create a list of image/label tuples for gradio.Gallery ==========
   plotList  : list[tuple[PIL.Image.Image,str]] = [ ]
   ecgNumber : int                              = 1
   info      : Final[str]                       = '25 mm/sec, 1 mV/10 mm'
   for result in Sessions[request.session_hash].Results:

      # ====== Plot ECG =====================================================
      # 1. Convert to NumPy
      # 2. Remove the Timestamp column (0)
      # 3. Convert from µV to mV
      result = result.t().detach().cpu().numpy()[1:] / 1000
      # print(result)

      # ------ ECG-12 -------------------------------------------------------
      if ecgType == deepfakeecg.DATA_ECG12:
         ecg_plot.plot(result,
                       title       = 'ECG-12 – ' + info,
                       sample_rate = deepfakeecg.ECG_SAMPLING_RATE,
                       lead_index  = [ 'I', 'II', 'V1', 'V2', 'V3', 'V4', 'V5', 'V6', 'III', 'aVR', 'aVL', 'aVF' ],
                       lead_order  = [0, 1, 8, 9, 10, 11, 2, 3, 4, 5, 6, 7],
                       show_grid   = True)
      # ------ ECG-8 --------------------------------------------------------
      else:
         ecg_plot.plot(result,
                       title       = 'ECG-8 – ' + info,
                       sample_rate = deepfakeecg.ECG_SAMPLING_RATE,
                       lead_index  = [ 'I', 'II', 'V1', 'V2', 'V3', 'V4', 'V5', 'V6' ],
                       lead_order  = [0, 1, 2, 3, 4, 5, 6, 7],
                       show_grid   = True)

      # ====== Generate WebP output =========================================
      imageBuffer = io.BytesIO()
      plt.savefig(imageBuffer, format = 'webp')
      plt.close()
      image : PIL.Image.Image = PIL.Image.open(imageBuffer)
      plotList.append( (image, f'ECG Number {ecgNumber}') )

      ecgNumber = ecgNumber + 1

   return plotList


# ###### Generic download ###################################################
def download(request:      gradio.Request,
             outputFormat: int) -> pathlib.Path | None:

   if outputFormat == deepfakeecg.OUTPUT_CSV:
      ecgResult = Sessions[request.session_hash].Results[Sessions[request.session_hash].Selected]
      ecgType   = Sessions[request.session_hash].Type
      fileName  = pathlib.Path(Sessions[request.session_hash].TempDirectory.name) / \
                     ('ECG-' + str(Sessions[request.session_hash].Selected + 1) + '.csv')
      deepfakeecg.dataToCSV(ecgResult, ecgType, fileName)

      log(f'Session "{request.session_hash}": Download CSV file {fileName}')
      return fileName

   elif ( (outputFormat == deepfakeecg.OUTPUT_PDF) or
          (outputFormat == deepfakeecg.OUTPUT_PDF_ANALYSIS) ):

      ecgResult = Sessions[request.session_hash].Results[Sessions[request.session_hash].Selected]
      ecgType   = Sessions[request.session_hash].Type
      fileName  = pathlib.Path(Sessions[request.session_hash].TempDirectory.name) / \
                     ('ECG-' + str(Sessions[request.session_hash].Selected + 1) + '.pdf')
      if ecgType == deepfakeecg.DATA_ECG12:
         outputLeads = [ 'I', 'II', 'III', 'aVL', 'aVR', 'aVF', 'V1', 'V2', 'V3', 'V4' , 'V5' , 'V6' ]
      else:
         outputLeads = [ 'I', 'II', 'V1', 'V2', 'V3', 'V4' , 'V5' , 'V6' ]

      deepfakeecg.dataToPDF(ecgResult, ecgType, outputLeads, fileName, outputFormat,
                            Sessions[request.session_hash].Selected + 1)

      log(f'Session "{request.session_hash}": Download PDF file {fileName}')
      return fileName

   return None


# ###### Download CSV #######################################################
def downloadCSV(request: gradio.Request) -> pathlib.Path | None:
   return download(request, deepfakeecg.OUTPUT_CSV)


# ###### Download PDF #######################################################
def downloadPDF(request: gradio.Request) -> pathlib.Path | None:
   return download(request, deepfakeecg.OUTPUT_PDF)


# ###### Download PDF #######################################################
def downloadPDFwithAnalysis(request: gradio.Request) -> pathlib.Path | None:
   return download(request, deepfakeecg.OUTPUT_PDF_ANALYSIS)


# ###### Analyze the selected ECG ###########################################
def analyze(event:   gradio.SelectData,
            request: gradio.Request) -> matplotlib.figure.Figure:

   Sessions[request.session_hash].Selected = event.index
   log(f'Session "{request.session_hash}": Analyze ECG #{Sessions[request.session_hash].Selected + 1}!')

   data = Sessions[request.session_hash].Results[Sessions[request.session_hash].Selected]

   data = data.t().detach().cpu().numpy()[1:] / 1000

   leadI = data[0]

   signals, info = neurokit2.ecg_process(leadI, sampling_rate = deepfakeecg.ECG_SAMPLING_RATE)
   neurokit2.ecg_plot(signals, info)

   # DIN A4 landscape: w=11.7, h=8.27
   w = 508/25.4   # mm to inch
   h = 122/25.4   # mm to inch
   matplotlib.pyplot.gcf().set_size_inches(w, h, forward=True)

   return matplotlib.pyplot.gcf()


# ###### Print usage and exit ###############################################
def usage(exitCode : int = 0) -> str:
   sys.stdout.write('Usage: ' + sys.argv[0] + ' [-d|--device cpu|cuda] [-v|--version]\n')
   sys.exit(exitCode)



# ###### Main program #######################################################

# ====== Initialise =========================================================
runOnDevice: str = 'cuda' if torch.cuda.is_available() else 'cpu'
css = r"""
div {
   background-image: url("https://www.nntb.no/~dreibh/graphics/backgrounds/background-essen.png");
}

/* ###### General Settings ##############################################  */
html, body {
   height:           100%;
   margin:           0;
   padding:          0;
   font-family:      sans-serif;
   font-size:        small;
   background-color: #E3E3E3;   /* Simula background colour: #E3E3E3 */
   background-image: url("https://www.nntb.no/~dreibh/graphics/backgrounds/background-wiehl.png");
}


/* ###### Header ########################################################  */
div.program-header {
   background-image: none;
   background-color: #F15D22;   /* Simula header colour: #F15D22 */
   height:           7.5vh;
   display:          flex;
   justify-content:  space-between;
}

div.program-logo-left {
   width:            12.5vw;
   float:            left;
   display:          flex;
   padding:          0% 1%;
   align-items:      center;
   background:       white;
}

div.program-logo-right {
   width:            12.5vw;
   float:            right;
   display:          flex;
   padding:          0% 1%;
   align-items:      center;
   background:       white;
}

div.program-title {
   display:          flex;
   align-items:      center;
   padding:          0% 1%;
   background-image: none;
   background-color: #F15D22;   /* Simula header colour: #F15D22 */

   font-family:      "Open Sans", sans-serif;
   font-size:        4vh;
   font-weight:      bold;
}

img.program-logo-image {
   min-height:       4vh;
   max-height:       4vh;
   margin-left:      auto;
   margin-right:     auto;
}
"""


# ====== Check arguments ====================================================
try:
   options, args = getopt.getopt(
      sys.argv[1:],
      'd:v',
      [
         'device=',
         'version'
      ])
   for option, optarg in options:
      if option in ( '-d', '--device' ):
         runOnDevice = optarg
      elif option in ( '-v', '--version' ):
         sys.stdout.write('PyTorch version: ' + torch.__version__ + '\n')
         sys.stdout.write('CUDA version:    ' + torch.version.cuda + '\n')
         sys.stdout.write('CUDA available:  ' + ('yes' if torch.cuda.is_available() else 'no') + '\n')
         sys.stdout.write('Device:          ' + runOnDevice + '\n')
         sys.exit(1)
      else:
         sys.stderr.write('ERROR: Invalid option ' + option + '!\n')
         sys.exit(1)

except getopt.GetoptError as error:
   sys.stderr.write('ERROR: ' + str(error) + '\n')
   usage(1)
if len(args) > 0:
   usage(1)


# ====== Create GUI =========================================================
with gradio.Blocks(css = css, theme = gradio.themes.Glass(secondary_hue=gradio.themes.colors.blue),
                   fill_height = True, fill_width = True) as gui:

   # ====== Session handling ================================================
   # Session initialization, to be called when page is loaded
   gui.load(initializeSession)
   # Session clean-up, to be called when page is closed/refreshed
   gui.unload(cleanUpSession)

   # ====== Header ==========================================================
   with gradio.Row(height = '10vh', min_height = '10vh', max_height = '10vh'):
      big_block = gradio.HTML("""
<div class="program-header">
   <div class="program-logo-left">
      <img class="program-logo-image" src="" alt="SimulaMet" height="32" />
   </div>
   <div class="program-title" id="title"><a href="https://ihi-search.eu/">SEARCH</a>&nbsp;DeepFake ECG Generator v""" + version.DEEPFAKEECGGENPLUS_VERSION +  """</div>
   <div class="program-logo-right">
      <img class="program-logo-image" src="" alt="NorNet" height="64" />
   </div>
</div>
""")

   # gradio.Markdown('## Settings')

   with gradio.Row(height = '10vh', min_height = '10vh', max_height = '10vh'):
      sliderNumberOfECGs     = gradio.Slider(1, 100, label="Number of ECGs", step = 1, value = 4, interactive = True)
      # sliderLengthInSeconds = gradio.Slider(5, 60, label="Length (s)", step = 5, value = 10, interactive = True)
      dropdownType           = gradio.Dropdown( [ 'ECG-12', 'ECG-8' ], label = 'ECG Type', interactive = True)
      dropdownGeneratorModel = gradio.Dropdown( [ 'Default' ], label = 'Generator Model', interactive = True)
      with gradio.Column():
         buttonGenerate = gradio.Button("Generate ECGs!")
         # buttonAnalyze  = gradio.Button("Analyze this ECG!")
         with gradio.Row():
            buttonCSV = gradio.DownloadButton("Download CSV")
            buttonCSV_hidden = gradio.DownloadButton(visible=False, elem_id="download_csv_hidden")
            buttonPDF = gradio.DownloadButton("Download ECG PDF")
            buttonPDF_hidden = gradio.DownloadButton(visible=False, elem_id="download_pdf_hidden")
            buttonPDFwAnalysis = gradio.DownloadButton("Download ECG+Analysis PDF")
            buttonPDFwAnalysis_hidden = gradio.DownloadButton(visible=False, elem_id="download_pdfwanalysis_hidden")

   # gradio.Markdown('## Output')

   with gradio.Row(): # height = '24vh', min_height = '24vh', max_height = '24vh'):
      outputGallery = gradio.Gallery(label         = 'Generated ECGs',
                                     columns       = 8,
                                     # rows          = 1,
                                     height        = 'auto',
                                     object_fit    = 'contain',
                                     show_label    = True,
                                     allow_preview = True,
                                     preview       = False
                                    )

   with gradio.Row(): # height = '24vh', min_height = '24vh', max_height = '24vh'):
      analysisOutput = gradio.Plot(label = 'Analysis')

   # ====== Add click event handling for "Generate" button ==================
   buttonGenerate.click(predict,
                        inputs  = [ sliderNumberOfECGs,
                                    # sliderLengthInSeconds,
                                    dropdownType,
                                    dropdownGeneratorModel ],
                        outputs = [ outputGallery ]
                     )

   # ====== Add click event handling for "Analyze" button ===================
   outputGallery.select(analyze,
                        inputs  = [ ],
                        outputs = [ analysisOutput ]
                       )

   # ====== Add click event handling for download buttons ===================
   # Using hidden button and JavaScript, to generate download file on-the-fly:
   # https://github.com/gradio-app/gradio/issues/9230#issuecomment-2323771634
   buttonCSV.click(fn      = downloadCSV,
                   inputs  = None,
                   outputs = [ buttonCSV_hidden ]).then(
                      fn = None, inputs = None, outputs = None,
                      js = "() => document.querySelector('#download_csv_hidden').click()")
   buttonPDF.click(fn      = downloadPDF,
                   inputs  = None,
                   outputs = [ buttonPDF_hidden ]).then(
                      fn = None, inputs = None, outputs = None,
                      js = "() => document.querySelector('#download_pdf_hidden').click()")
   buttonPDFwAnalysis.click(fn      = downloadPDFwithAnalysis,
                            inputs  = None,
                            outputs = [ buttonPDFwAnalysis_hidden ]).then(
                               fn = None, inputs = None, outputs = None,
                               js = "() => document.querySelector('#download_pdfwanalysis_hidden').click()")

   # ====== Run on startup ==================================================
   gui.load(predict,
            inputs  = [ sliderNumberOfECGs,
                        # sliderLengthInSeconds,
                        dropdownType,
                        dropdownGeneratorModel ],
            outputs = [ outputGallery ]
           )

# ====== Run the GUI ========================================================
if __name__ == "__main__":

   # ------ Prepare temporary directory -------------------------------------
   TempDirectory = tempfile.TemporaryDirectory(prefix = 'DeepFakeECGPlus-')
   log(f'Prepared temporary directory {TempDirectory.name}')

   # ------ Run the GUI, with downloads from temporary directory allowed ----
   gui.launch(allowed_paths = [ TempDirectory.name ])

   # ------ Clean up --------------------------------------------------------
   log(f'Cleaning up temporary directory {TempDirectory.name}')
   TempDirectory.cleanup()
   log('Done!')