Spaces:
Sleeping
Sleeping
Add model files
Browse files- app.py +91 -0
- standalone_velvet.py +305 -0
- visual_bloom.torch +3 -0
app.py
ADDED
|
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
|
| 3 |
+
from standalone_velvet import setup_models
|
| 4 |
+
|
| 5 |
+
models_dict = setup_models("visual_bloom.torch")
|
| 6 |
+
visual_bloom = models_dict["visual_bloom"]
|
| 7 |
+
tokenizer = models_dict["tokenizer"]
|
| 8 |
+
image_feature_collator = models_dict["image_feature_collator"]
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
def run_inference(text_input, image_input):
|
| 12 |
+
image_features, image_attentions = image_feature_collator([image_input])
|
| 13 |
+
instruction_inputs = tokenizer([text_input], return_tensors="pt")
|
| 14 |
+
language_output = visual_bloom.generate(
|
| 15 |
+
image_features,
|
| 16 |
+
image_attentions,
|
| 17 |
+
instruction_inputs["input_ids"],
|
| 18 |
+
instruction_inputs["attention_mask"],
|
| 19 |
+
)
|
| 20 |
+
|
| 21 |
+
human_output = tokenizer.decode(language_output[0], skip_special_tokens=True)
|
| 22 |
+
return human_output.split(".")[0]
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
if __name__ == "__main__":
|
| 26 |
+
markdown = """
|
| 27 |
+
# Quick introduction
|
| 28 |
+
|
| 29 |
+
We have proposed a prompting vision language model.
|
| 30 |
+
The model can caption images and answer questions related to images.
|
| 31 |
+
It is trained on CC3M, COCO, VQAv2, OK-VQA, TextCaps, TextVQA.
|
| 32 |
+
As the result of using Google Translate,
|
| 33 |
+
these datasets collectively contain millions of image-text pairs in English and Vietnamese.
|
| 34 |
+
|
| 35 |
+
For further details, please refer to [Velvet](https://github.com/dinhanhx/velvet?tab=readme-ov-file#introduction).
|
| 36 |
+
|
| 37 |
+
# Usage
|
| 38 |
+
|
| 39 |
+
## Run with pre-defined examples
|
| 40 |
+
|
| 41 |
+
1. Scroll to bottom of the page to see the examples.
|
| 42 |
+
2. Click one of them.
|
| 43 |
+
3. Click the `Run Inference` button.
|
| 44 |
+
|
| 45 |
+
## Run with user-defined inputs
|
| 46 |
+
|
| 47 |
+
### 1. Prepare text input
|
| 48 |
+
|
| 49 |
+
Image captioning:
|
| 50 |
+
- `Generate caption in en:`
|
| 51 |
+
- `Generate caption in vi:`
|
| 52 |
+
|
| 53 |
+
Visual question answering:
|
| 54 |
+
- `Generate answer in en: <question>?`
|
| 55 |
+
- `Generate answer in vi: <question>?`
|
| 56 |
+
|
| 57 |
+
Don't forget to replace `<question>` with your own question either in English or Vietnamese.
|
| 58 |
+
|
| 59 |
+
To write the prompt, one can refer to the examples at the bottom of the page.
|
| 60 |
+
|
| 61 |
+
### 2. Prepare image input
|
| 62 |
+
|
| 63 |
+
You can do as said in Image Input box. Wide range of image types are supported by PIL.
|
| 64 |
+
|
| 65 |
+
### 3. Click the `Run Inference` button
|
| 66 |
+
"""
|
| 67 |
+
examples = [
|
| 68 |
+
["Generate caption in en:", "examples/cat.png"],
|
| 69 |
+
["Generate caption in vi:", "examples/cat.png"],
|
| 70 |
+
["Generate answer in en: what is the color of the cat?", "examples/cat.png"],
|
| 71 |
+
["Generate answer in vi: màu sắc của con mèo là gì?", "examples/cat.png"],
|
| 72 |
+
]
|
| 73 |
+
|
| 74 |
+
with gr.Blocks() as demo:
|
| 75 |
+
gr.Markdown(markdown)
|
| 76 |
+
|
| 77 |
+
text_input = gr.Textbox(label="Text Input")
|
| 78 |
+
image_input = gr.Image(label="Image Input", type="pil")
|
| 79 |
+
|
| 80 |
+
text_output = gr.Textbox(label="Text Output")
|
| 81 |
+
|
| 82 |
+
infer_button = gr.Button("Run Inference")
|
| 83 |
+
infer_button.click(
|
| 84 |
+
run_inference, inputs=[text_input, image_input], outputs=text_output
|
| 85 |
+
)
|
| 86 |
+
|
| 87 |
+
examples = gr.Examples(
|
| 88 |
+
examples=examples,
|
| 89 |
+
inputs=[text_input, image_input],
|
| 90 |
+
)
|
| 91 |
+
demo.launch()
|
standalone_velvet.py
ADDED
|
@@ -0,0 +1,305 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import warnings
|
| 2 |
+
from dataclasses import dataclass
|
| 3 |
+
from typing import List
|
| 4 |
+
|
| 5 |
+
import torch
|
| 6 |
+
from einops import rearrange
|
| 7 |
+
from PIL import Image
|
| 8 |
+
from torch import nn
|
| 9 |
+
from transformers.models.bert import BertConfig, BertModel
|
| 10 |
+
from transformers.models.bloom import BloomConfig, BloomForCausalLM, BloomTokenizerFast
|
| 11 |
+
from transformers.models.convnext import ConvNextImageProcessor
|
| 12 |
+
from transformers.models.convnextv2 import ConvNextV2Config
|
| 13 |
+
from transformers.models.convnextv2.modeling_convnextv2 import ConvNextV2Model
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
# Copied from
|
| 17 |
+
# https://github.com/dinhanhx/velvet/blob/b70730654d26d399920964ed7e606a8f5586c9d1/velvet/collator.py#L13-L32
|
| 18 |
+
@dataclass
|
| 19 |
+
class ImageFeatureCollator:
|
| 20 |
+
image_processor: ConvNextImageProcessor
|
| 21 |
+
image_model: ConvNextV2Model
|
| 22 |
+
|
| 23 |
+
def __call__(self, batch_image: List[Image.Image]):
|
| 24 |
+
return self.tensorize_batch_image(batch_image=batch_image)
|
| 25 |
+
|
| 26 |
+
def tensorize_batch_image(self, batch_image: List[Image.Image]):
|
| 27 |
+
image_inputs = self.image_processor(batch_image, return_tensors="pt")
|
| 28 |
+
|
| 29 |
+
with torch.no_grad():
|
| 30 |
+
image_outputs = self.image_model(**image_inputs)
|
| 31 |
+
image_features = image_outputs["last_hidden_state"]
|
| 32 |
+
|
| 33 |
+
image_features = rearrange(image_features, "b c h w -> b h w c")
|
| 34 |
+
image_features = rearrange(image_features, "b h w c -> b (h w) c")
|
| 35 |
+
|
| 36 |
+
image_attentions = torch.ones(image_features.size()[:-1], dtype=torch.long)
|
| 37 |
+
return image_features, image_attentions
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
# Copied from
|
| 41 |
+
# https://github.com/dinhanhx/velvet/blob/b70730654d26d399920964ed7e606a8f5586c9d1/velvet/model/cutie.py#L6C1-L78C28
|
| 42 |
+
class IdentityForBertEmbeddings(nn.Module):
|
| 43 |
+
"""To skip all BertEmbeddings because another text embeddings provided by another model are used"""
|
| 44 |
+
|
| 45 |
+
def __init__(self, *args, **kwargs) -> None:
|
| 46 |
+
super().__init__(*args, **kwargs)
|
| 47 |
+
|
| 48 |
+
def forward(self, **bert_embeddings_args):
|
| 49 |
+
inputs_embeds = bert_embeddings_args.get("inputs_embeds", None)
|
| 50 |
+
return inputs_embeds
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
class Cutie(nn.Module):
|
| 54 |
+
"""Cutie - Qt - Query Transformer - Q-Former
|
| 55 |
+
|
| 56 |
+
Cutie is motivated by the underlying theoretical foundations of Q-Former presented in BLIP-2 https://arxiv.org/abs/2301.12597
|
| 57 |
+
It should be noted that Cutie differs from the specific approach described in the aforementioned paper
|
| 58 |
+
Both Cutie and Q-former have Query tokens.
|
| 59 |
+
Cutie uses the same unmodified BERT.
|
| 60 |
+
Q-former modifies BERT to behave differently on some tasks.
|
| 61 |
+
"""
|
| 62 |
+
|
| 63 |
+
def __init__(
|
| 64 |
+
self,
|
| 65 |
+
bert_config: BertConfig,
|
| 66 |
+
max_query_length: int = 32,
|
| 67 |
+
language_model_ignore_label: int = -100,
|
| 68 |
+
) -> None:
|
| 69 |
+
assert bert_config.is_decoder, "BERT must be a decoder"
|
| 70 |
+
assert bert_config.add_cross_attention, "BERT must have cross attention layer"
|
| 71 |
+
super().__init__()
|
| 72 |
+
self.bert_model = BertModel(bert_config, add_pooling_layer=False)
|
| 73 |
+
self.bert_model.embeddings = IdentityForBertEmbeddings()
|
| 74 |
+
|
| 75 |
+
self.query_tokens = nn.Parameter(
|
| 76 |
+
torch.zeros(1, max_query_length, bert_config.hidden_size)
|
| 77 |
+
)
|
| 78 |
+
self.query_tokens.data.normal_(mean=0.0, std=bert_config.initializer_range)
|
| 79 |
+
self.query_attentions = torch.ones(
|
| 80 |
+
self.query_tokens.size()[:-1], dtype=torch.long
|
| 81 |
+
)
|
| 82 |
+
self.query_labels = torch.full(
|
| 83 |
+
self.query_tokens.size()[:-1], language_model_ignore_label, dtype=torch.long
|
| 84 |
+
)
|
| 85 |
+
|
| 86 |
+
def forward(
|
| 87 |
+
self,
|
| 88 |
+
image_features: torch.Tensor,
|
| 89 |
+
image_attentions: torch.Tensor,
|
| 90 |
+
instruction_embeds: torch.Tensor,
|
| 91 |
+
instruction_attention_mask: torch.Tensor,
|
| 92 |
+
):
|
| 93 |
+
batch_size = image_features.size(0)
|
| 94 |
+
|
| 95 |
+
query_tokens = self.query_tokens.expand(batch_size, -1, -1).to(
|
| 96 |
+
self.query_tokens.device
|
| 97 |
+
)
|
| 98 |
+
query_attentions = self.query_attentions.expand(batch_size, -1).to(
|
| 99 |
+
self.query_tokens.device
|
| 100 |
+
)
|
| 101 |
+
|
| 102 |
+
cat_embeds = torch.cat([query_tokens, instruction_embeds], dim=1)
|
| 103 |
+
cat_attentions = torch.cat(
|
| 104 |
+
[query_attentions, instruction_attention_mask], dim=1
|
| 105 |
+
)
|
| 106 |
+
|
| 107 |
+
bert_outputs = self.bert_model(
|
| 108 |
+
inputs_embeds=cat_embeds,
|
| 109 |
+
attention_mask=cat_attentions,
|
| 110 |
+
encoder_hidden_states=image_features,
|
| 111 |
+
encoder_attention_mask=image_attentions,
|
| 112 |
+
)
|
| 113 |
+
cutie_output = bert_outputs.last_hidden_state[:, : query_tokens.size(1), :]
|
| 114 |
+
return cutie_output
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
# Copied from
|
| 118 |
+
# https://github.com/dinhanhx/velvet/blob/b70730654d26d399920964ed7e606a8f5586c9d1/velvet/model/visual_bloom.py#L12C1-L162C31
|
| 119 |
+
class VisualBloom(nn.Module):
|
| 120 |
+
"""A BLOOM-based model that can take image inputs"""
|
| 121 |
+
|
| 122 |
+
def __init__(
|
| 123 |
+
self,
|
| 124 |
+
convnextv2_config: ConvNextV2Config,
|
| 125 |
+
bert_config: BertConfig,
|
| 126 |
+
bloom_config: BloomConfig,
|
| 127 |
+
bloom_name: str,
|
| 128 |
+
use_frozen_bloom: bool = True,
|
| 129 |
+
) -> None:
|
| 130 |
+
super().__init__()
|
| 131 |
+
|
| 132 |
+
if (
|
| 133 |
+
convnextv2_config.hidden_sizes[-1]
|
| 134 |
+
== bert_config.hidden_size
|
| 135 |
+
== bloom_config.hidden_size
|
| 136 |
+
):
|
| 137 |
+
self.use_projection = False
|
| 138 |
+
warnings.warn(
|
| 139 |
+
"All embedding dimensions are equal. No linear projection layers are created."
|
| 140 |
+
)
|
| 141 |
+
else:
|
| 142 |
+
self.use_projection = True
|
| 143 |
+
self.text_to_cutie = nn.Linear(
|
| 144 |
+
bloom_config.hidden_size, bert_config.hidden_size
|
| 145 |
+
)
|
| 146 |
+
self.image_to_cutie = nn.Linear(
|
| 147 |
+
convnextv2_config.hidden_sizes[-1], bert_config.hidden_size
|
| 148 |
+
)
|
| 149 |
+
self.cutie_to_text = nn.Linear(
|
| 150 |
+
bert_config.hidden_size, bloom_config.hidden_size
|
| 151 |
+
)
|
| 152 |
+
|
| 153 |
+
self.cutie_model = Cutie(bert_config)
|
| 154 |
+
|
| 155 |
+
# Load and freeze BLOOM model
|
| 156 |
+
if use_frozen_bloom:
|
| 157 |
+
self.bloom_model = BloomForCausalLM.from_pretrained(bloom_name)
|
| 158 |
+
for param in self.bloom_model.parameters():
|
| 159 |
+
param.requires_grad = False
|
| 160 |
+
else:
|
| 161 |
+
self.bloom_model = BloomForCausalLM(bloom_config)
|
| 162 |
+
|
| 163 |
+
def forward(
|
| 164 |
+
self,
|
| 165 |
+
# Image model outputs - Q-former inputs
|
| 166 |
+
image_features: torch.Tensor,
|
| 167 |
+
image_attentions: torch.Tensor,
|
| 168 |
+
# Q-former inputs
|
| 169 |
+
instruction_input_ids: torch.Tensor,
|
| 170 |
+
instruction_attention_mask: torch.Tensor,
|
| 171 |
+
# Frozen language model inputs
|
| 172 |
+
language_model_input_ids: torch.Tensor,
|
| 173 |
+
language_model_attention_mask: torch.Tensor,
|
| 174 |
+
language_model_labels: torch.Tensor,
|
| 175 |
+
):
|
| 176 |
+
instruction_embeds = self.bloom_model.transformer.word_embeddings(
|
| 177 |
+
instruction_input_ids
|
| 178 |
+
)
|
| 179 |
+
instruction_embeds = self.bloom_model.transformer.word_embeddings_layernorm(
|
| 180 |
+
instruction_embeds
|
| 181 |
+
)
|
| 182 |
+
|
| 183 |
+
if self.use_projection:
|
| 184 |
+
image_features = self.image_to_cutie(image_features)
|
| 185 |
+
instruction_embeds = self.text_to_cutie(instruction_embeds)
|
| 186 |
+
|
| 187 |
+
cutie_output = self.cutie_model(
|
| 188 |
+
image_features=image_features,
|
| 189 |
+
image_attentions=image_attentions,
|
| 190 |
+
instruction_embeds=instruction_embeds,
|
| 191 |
+
instruction_attention_mask=instruction_attention_mask,
|
| 192 |
+
)
|
| 193 |
+
|
| 194 |
+
if self.use_projection:
|
| 195 |
+
cutie_output = self.cutie_to_text(cutie_output)
|
| 196 |
+
|
| 197 |
+
cutie_attentions = self.cutie_model.query_attentions.expand(
|
| 198 |
+
cutie_output.size(0), -1
|
| 199 |
+
).to(cutie_output.device)
|
| 200 |
+
cutie_labels = self.cutie_model.query_labels.expand(
|
| 201 |
+
cutie_output.size(0), -1
|
| 202 |
+
).to(cutie_output.device)
|
| 203 |
+
|
| 204 |
+
language_model_embeds = self.bloom_model.transformer.word_embeddings(
|
| 205 |
+
language_model_input_ids
|
| 206 |
+
)
|
| 207 |
+
language_model_embeds = self.bloom_model.transformer.word_embeddings_layernorm(
|
| 208 |
+
language_model_embeds
|
| 209 |
+
)
|
| 210 |
+
|
| 211 |
+
cat_embeds = torch.cat([cutie_output, language_model_embeds], dim=1)
|
| 212 |
+
cat_attentions = torch.cat(
|
| 213 |
+
[cutie_attentions, language_model_attention_mask], dim=1
|
| 214 |
+
)
|
| 215 |
+
cat_labels = torch.cat([cutie_labels, language_model_labels], dim=1)
|
| 216 |
+
|
| 217 |
+
bloom_outputs = self.bloom_model(
|
| 218 |
+
inputs_embeds=cat_embeds, attention_mask=cat_attentions, labels=cat_labels
|
| 219 |
+
)
|
| 220 |
+
return bloom_outputs
|
| 221 |
+
|
| 222 |
+
@torch.no_grad()
|
| 223 |
+
def generate(
|
| 224 |
+
self,
|
| 225 |
+
# Image model outputs - Q-former inputs
|
| 226 |
+
image_features: torch.Tensor,
|
| 227 |
+
image_attentions: torch.Tensor,
|
| 228 |
+
# Q-former inputs
|
| 229 |
+
instruction_input_ids: torch.Tensor,
|
| 230 |
+
instruction_attention_mask: torch.Tensor,
|
| 231 |
+
):
|
| 232 |
+
instruction_embeds = self.bloom_model.transformer.word_embeddings(
|
| 233 |
+
instruction_input_ids
|
| 234 |
+
)
|
| 235 |
+
instruction_embeds = self.bloom_model.transformer.word_embeddings_layernorm(
|
| 236 |
+
instruction_embeds
|
| 237 |
+
)
|
| 238 |
+
|
| 239 |
+
if self.use_projection:
|
| 240 |
+
image_features = self.image_to_cutie(image_features)
|
| 241 |
+
cutie_instruction_embeds = self.text_to_cutie(instruction_embeds)
|
| 242 |
+
|
| 243 |
+
cutie_output = self.cutie_model(
|
| 244 |
+
image_features=image_features,
|
| 245 |
+
image_attentions=image_attentions,
|
| 246 |
+
instruction_embeds=cutie_instruction_embeds,
|
| 247 |
+
instruction_attention_mask=instruction_attention_mask,
|
| 248 |
+
)
|
| 249 |
+
|
| 250 |
+
if self.use_projection:
|
| 251 |
+
cutie_output = self.cutie_to_text(cutie_output)
|
| 252 |
+
|
| 253 |
+
cutie_attentions = self.cutie_model.query_attentions.expand(
|
| 254 |
+
cutie_output.size(0), -1
|
| 255 |
+
).to(cutie_output.device)
|
| 256 |
+
|
| 257 |
+
cat_embeds = torch.cat([cutie_output, instruction_embeds], dim=1)
|
| 258 |
+
cat_attentions = torch.cat(
|
| 259 |
+
[cutie_attentions, instruction_attention_mask], dim=1
|
| 260 |
+
)
|
| 261 |
+
|
| 262 |
+
language_output = self.bloom_model.generate(
|
| 263 |
+
inputs_embeds=cat_embeds,
|
| 264 |
+
attention_mask=cat_attentions,
|
| 265 |
+
max_length=96,
|
| 266 |
+
penalty_alpha=0.6,
|
| 267 |
+
top_k=4,
|
| 268 |
+
)
|
| 269 |
+
return language_output
|
| 270 |
+
|
| 271 |
+
|
| 272 |
+
def setup_models(visual_bloom_state_dict_path: str):
|
| 273 |
+
image_model_name = "facebook/convnextv2-large-22k-224"
|
| 274 |
+
image_config = ConvNextV2Config.from_pretrained(image_model_name)
|
| 275 |
+
image_processor = ConvNextImageProcessor.from_pretrained(image_model_name)
|
| 276 |
+
image_model = ConvNextV2Model.from_pretrained(image_model_name)
|
| 277 |
+
image_feature_collator = ImageFeatureCollator(image_processor, image_model)
|
| 278 |
+
|
| 279 |
+
bloom_model_name = "bigscience/bloomz-1b7"
|
| 280 |
+
bloom_config = BloomConfig.from_pretrained(bloom_model_name)
|
| 281 |
+
tokenizer = BloomTokenizerFast.from_pretrained(bloom_model_name)
|
| 282 |
+
tokenizer.padding_side = "right"
|
| 283 |
+
|
| 284 |
+
bert_config = BertConfig(
|
| 285 |
+
hidden_size=1024,
|
| 286 |
+
num_hidden_layers=6,
|
| 287 |
+
num_attention_heads=16,
|
| 288 |
+
is_decoder=True,
|
| 289 |
+
add_cross_attention=True,
|
| 290 |
+
)
|
| 291 |
+
|
| 292 |
+
visual_bloom = VisualBloom(
|
| 293 |
+
image_config,
|
| 294 |
+
bert_config,
|
| 295 |
+
bloom_config,
|
| 296 |
+
bloom_model_name,
|
| 297 |
+
use_frozen_bloom=False,
|
| 298 |
+
)
|
| 299 |
+
visual_bloom.load_state_dict(torch.load(visual_bloom_state_dict_path))
|
| 300 |
+
visual_bloom = visual_bloom.eval()
|
| 301 |
+
return {
|
| 302 |
+
"visual_bloom": visual_bloom,
|
| 303 |
+
"tokenizer": tokenizer,
|
| 304 |
+
"image_feature_collator": image_feature_collator,
|
| 305 |
+
}
|
visual_bloom.torch
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:18440703d035a942db21b82fe9aaf0d15895e46e97cfb7ae30217fa9c04daf0d
|
| 3 |
+
size 7265806579
|