Spaces:
Runtime error
Runtime error
File size: 13,061 Bytes
74037f6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 |
# predict.py - FoodVision Command Line Prediction Script
# ============================================================
#
# USAGE:
# ------
# python predict.py --image path/to/food.jpg
# python predict.py --image pizza.jpg --top 5
# python predict.py --folder food_images/
# python predict.py --image burger.png --json results.json
#
# FEATURES:
# ---------
# β
Single image prediction
# β
Batch prediction on folder
# β
JSON output option
# β
Detailed or simple output modes
#
# ============================================================
import torch
import torch.nn.functional as F
from torchvision import transforms
from PIL import Image
import timm
import argparse
from pathlib import Path
import json
import sys
# ============================================================
# FOOD CLASSES (101 categories)
# ============================================================
FOOD_CLASSES = [
"apple_pie", "baby_back_ribs", "baklava", "beef_carpaccio", "beef_tartare",
"beet_salad", "beignets", "bibimbap", "bread_pudding", "breakfast_burrito",
"bruschetta", "caesar_salad", "cannoli", "caprese_salad", "carrot_cake",
"ceviche", "cheese_plate", "cheesecake", "chicken_curry", "chicken_quesadilla",
"chicken_wings", "chocolate_cake", "chocolate_mousse", "churros", "clam_chowder",
"club_sandwich", "crab_cakes", "creme_brulee", "croque_madame", "cup_cakes",
"deviled_eggs", "donuts", "dumplings", "edamame", "eggs_benedict",
"escargots", "falafel", "filet_mignon", "fish_and_chips", "foie_gras",
"french_fries", "french_onion_soup", "french_toast", "fried_calamari", "fried_rice",
"frozen_yogurt", "garlic_bread", "gnocchi", "greek_salad", "grilled_cheese_sandwich",
"grilled_salmon", "guacamole", "gyoza", "hamburger", "hot_and_sour_soup",
"hot_dog", "huevos_rancheros", "hummus", "ice_cream", "lasagna",
"lobster_bisque", "lobster_roll_sandwich", "macaroni_and_cheese", "macarons", "miso_soup",
"mussels", "nachos", "omelette", "onion_rings", "oysters",
"pad_thai", "paella", "pancakes", "panna_cotta", "peking_duck",
"pho", "pizza", "pork_chop", "poutine", "prime_rib",
"pulled_pork_sandwich", "ramen", "ravioli", "red_velvet_cake", "risotto",
"samosa", "sashimi", "scallops", "seaweed_salad", "shrimp_and_grits",
"spaghetti_bolognese", "spaghetti_carbonara", "spring_rolls", "steak", "strawberry_shortcake",
"sushi", "tacos", "takoyaki", "tiramisu", "tuna_tartare", "waffles"
]
# ============================================================
# MODEL LOADING
# ============================================================
def load_model(model_path, device):
"""
Loads a trained model from checkpoint.
Args:
model_path: Path to .pth checkpoint file
device: torch device ('cuda' or 'cpu')
Returns:
Loaded model in eval mode
"""
print(f"π Loading model from: {model_path}")
try:
# Load checkpoint
checkpoint = torch.load(model_path, map_location=device)
# Get model config
model_config = checkpoint.get('model_config', {
'model_id': 'convnextv2_base.fcmae_ft_in22k_in1k_384'
})
# Create model
model = timm.create_model(
model_config['model_id'],
pretrained=False,
num_classes=101
)
# Load weights
model.load_state_dict(checkpoint['model_state_dict'])
model.to(device)
model.eval()
accuracy = checkpoint.get('best_val_acc', 0)
print(f"β
Model loaded successfully!")
print(f" Architecture: {model_config.get('name', 'ConvNeXt V2')}")
if accuracy > 0:
print(f" Accuracy: {accuracy:.2f}%")
return model
except Exception as e:
print(f"β Error loading model: {e}")
sys.exit(1)
# ============================================================
# IMAGE PREPROCESSING
# ============================================================
def preprocess_image(image_path):
"""
Loads and preprocesses an image.
Args:
image_path: Path to image file
Returns:
Preprocessed image tensor
"""
transform = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]
)
])
try:
# Load and convert image
image = Image.open(image_path).convert('RGB')
# Apply transforms
img_tensor = transform(image).unsqueeze(0)
return img_tensor
except Exception as e:
print(f"β Error loading image {image_path}: {e}")
return None
# ============================================================
# PREDICTION FUNCTION
# ============================================================
def predict(model, image_tensor, device, top_k=3):
"""
Predicts food class for a single image.
Args:
model: Trained PyTorch model
image_tensor: Preprocessed image
device: torch device
top_k: Number of top predictions
Returns:
List of (class_name, confidence) tuples
"""
with torch.no_grad():
# Move to device
image_tensor = image_tensor.to(device)
# Forward pass
outputs = model(image_tensor)
probabilities = F.softmax(outputs, dim=1)
# Get top-k
top_probs, top_indices = torch.topk(probabilities, top_k)
# Convert to lists
top_probs = top_probs.cpu().numpy()[0]
top_indices = top_indices.cpu().numpy()[0]
# Format results
results = []
for prob, idx in zip(top_probs, top_indices):
class_name = FOOD_CLASSES[idx]
confidence = float(prob) * 100
results.append((class_name, confidence))
return results
# ============================================================
# OUTPUT FORMATTING
# ============================================================
def print_predictions(image_path, predictions, detailed=True):
"""
Prints predictions in a nice format.
Args:
image_path: Path to image
predictions: List of (class_name, confidence) tuples
detailed: Whether to show detailed output
"""
if detailed:
print(f"\n{'='*60}")
print(f"π· Image: {image_path}")
print(f"{'='*60}")
for i, (food, conf) in enumerate(predictions, 1):
emoji = "π₯" if i == 1 else "π₯" if i == 2 else "π₯"
formatted_name = food.replace('_', ' ').title()
bar_length = int(conf / 2) # Scale to 50 chars max
bar = 'β' * bar_length + 'β' * (50 - bar_length)
print(f"\n{emoji} Rank {i}:")
print(f" Food: {formatted_name}")
print(f" Confidence: {conf:.2f}%")
print(f" {bar}")
print(f"\n{'='*60}\n")
else:
# Simple output
top_food, top_conf = predictions[0]
formatted_name = top_food.replace('_', ' ').title()
print(f"{image_path}: {formatted_name} ({top_conf:.1f}%)")
def save_json(image_path, predictions, output_file):
"""
Saves predictions to JSON file.
Args:
image_path: Path to image
predictions: List of (class_name, confidence) tuples
output_file: Output JSON file path
"""
result = {
'image': str(image_path),
'predictions': [
{
'rank': i,
'food': food,
'formatted_name': food.replace('_', ' ').title(),
'confidence': round(conf, 2)
}
for i, (food, conf) in enumerate(predictions, 1)
],
'top_prediction': {
'food': predictions[0][0],
'confidence': round(predictions[0][1], 2)
}
}
with open(output_file, 'w') as f:
json.dump(result, f, indent=2)
print(f"πΎ Saved results to: {output_file}")
# ============================================================
# MAIN FUNCTION
# ============================================================
def main():
parser = argparse.ArgumentParser(
description='FoodVision - AI-powered food classification',
formatter_class=argparse.RawDescriptionHelpFormatter,
epilog="""
Examples:
python predict.py --image pizza.jpg
python predict.py --image food.png --top 5
python predict.py --folder food_images/
python predict.py --image burger.jpg --simple
python predict.py --image pasta.jpg --json output.json
"""
)
# Input options
input_group = parser.add_mutually_exclusive_group(required=True)
input_group.add_argument('--image', type=str, help='Path to single image')
input_group.add_argument('--folder', type=str, help='Path to folder of images')
# Model options
parser.add_argument('--model', type=str, default='model1_best.pth',
help='Path to model checkpoint (default: model1_best.pth)')
# Output options
parser.add_argument('--top', type=int, default=3,
help='Number of top predictions to show (default: 3)')
parser.add_argument('--simple', action='store_true',
help='Simple output format (one line per image)')
parser.add_argument('--json', type=str,
help='Save results to JSON file')
# Device option
parser.add_argument('--cpu', action='store_true',
help='Force CPU usage (default: auto-detect GPU)')
args = parser.parse_args()
# Setup device
if args.cpu:
device = torch.device('cpu')
print("π» Using CPU")
else:
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
if device.type == 'cuda':
print(f"β‘ Using GPU: {torch.cuda.get_device_name(0)}")
else:
print("π» Using CPU (no GPU detected)")
# Load model
model = load_model(args.model, device)
print() # Blank line
# Get list of images to process
if args.image:
image_paths = [Path(args.image)]
else:
# Process folder
folder = Path(args.folder)
image_paths = list(folder.glob('*.jpg')) + list(folder.glob('*.jpeg')) + \
list(folder.glob('*.png')) + list(folder.glob('*.webp'))
if not image_paths:
print(f"β No images found in {folder}")
sys.exit(1)
print(f"π Found {len(image_paths)} images in {folder}\n")
# Process each image
all_results = {}
for img_path in image_paths:
# Preprocess
img_tensor = preprocess_image(img_path)
if img_tensor is None:
continue
# Predict
predictions = predict(model, img_tensor, device, args.top)
# Store results
all_results[str(img_path)] = predictions
# Print predictions
print_predictions(img_path, predictions, detailed=not args.simple)
# Save to JSON if requested
if args.json:
if len(all_results) == 1:
# Single image - save simple format
img_path, predictions = list(all_results.items())[0]
save_json(img_path, predictions, args.json)
else:
# Multiple images - save batch format
batch_results = {
'total_images': len(all_results),
'results': []
}
for img_path, predictions in all_results.items():
batch_results['results'].append({
'image': img_path,
'top_prediction': {
'food': predictions[0][0],
'confidence': round(predictions[0][1], 2)
},
'all_predictions': [
{
'rank': i,
'food': food,
'confidence': round(conf, 2)
}
for i, (food, conf) in enumerate(predictions, 1)
]
})
with open(args.json, 'w') as f:
json.dump(batch_results, f, indent=2)
print(f"\nπΎ Saved batch results to: {args.json}")
# Summary for batch processing
if len(all_results) > 1:
print(f"\n{'='*60}")
print(f"β
Successfully processed {len(all_results)} images")
print(f"{'='*60}")
# ============================================================
# RUN SCRIPT
# ============================================================
if __name__ == "__main__":
main() |