Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -4,13 +4,10 @@
|
|
| 4 |
# IMPROVEMENTS:
|
| 5 |
# -------------
|
| 6 |
# β
Mobile-friendly single-column layout
|
| 7 |
-
# β
|
| 8 |
-
# β
|
| 9 |
-
# β
|
| 10 |
-
# β
|
| 11 |
-
# β
Loads model from Hugging Face Hub OR local file
|
| 12 |
-
# β
Optimized for slow connections
|
| 13 |
-
# β
Touch-friendly interface
|
| 14 |
#
|
| 15 |
# ============================================================
|
| 16 |
|
|
@@ -21,7 +18,6 @@ from torchvision import transforms
|
|
| 21 |
from PIL import Image
|
| 22 |
import timm
|
| 23 |
from pathlib import Path
|
| 24 |
-
import hashlib
|
| 25 |
|
| 26 |
# ============================================================
|
| 27 |
# PAGE CONFIGURATION
|
|
@@ -34,37 +30,23 @@ st.set_page_config(
|
|
| 34 |
initial_sidebar_state="collapsed"
|
| 35 |
)
|
| 36 |
|
| 37 |
-
# ============================================================
|
| 38 |
-
# SESSION STATE INITIALIZATION
|
| 39 |
-
# ============================================================
|
| 40 |
-
|
| 41 |
-
if 'predictions' not in st.session_state:
|
| 42 |
-
st.session_state.predictions = None
|
| 43 |
-
if 'processed_image' not in st.session_state:
|
| 44 |
-
st.session_state.processed_image = None
|
| 45 |
-
if 'last_image_hash' not in st.session_state:
|
| 46 |
-
st.session_state.last_image_hash = None
|
| 47 |
-
|
| 48 |
# ============================================================
|
| 49 |
# MINIMAL CSS (Mobile-First)
|
| 50 |
# ============================================================
|
| 51 |
|
| 52 |
st.markdown("""
|
| 53 |
<style>
|
| 54 |
-
/* Remove extra padding on mobile */
|
| 55 |
.block-container {
|
| 56 |
padding-top: 2rem;
|
| 57 |
padding-bottom: 2rem;
|
| 58 |
}
|
| 59 |
|
| 60 |
-
/* Cleaner header */
|
| 61 |
h1 {
|
| 62 |
text-align: center;
|
| 63 |
color: #FF6B6B;
|
| 64 |
margin-bottom: 0.5rem;
|
| 65 |
}
|
| 66 |
|
| 67 |
-
/* Result cards */
|
| 68 |
.prediction-card {
|
| 69 |
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
|
| 70 |
padding: 1.5rem;
|
|
@@ -85,14 +67,12 @@ st.markdown("""
|
|
| 85 |
opacity: 0.9;
|
| 86 |
}
|
| 87 |
|
| 88 |
-
/* Confidence bars */
|
| 89 |
.conf-bar {
|
| 90 |
background: #f0f0f0;
|
| 91 |
border-radius: 8px;
|
| 92 |
height: 36px;
|
| 93 |
margin: 0.5rem 0;
|
| 94 |
overflow: hidden;
|
| 95 |
-
position: relative;
|
| 96 |
}
|
| 97 |
|
| 98 |
.conf-fill {
|
|
@@ -105,16 +85,6 @@ st.markdown("""
|
|
| 105 |
font-weight: 600;
|
| 106 |
font-size: 0.95rem;
|
| 107 |
}
|
| 108 |
-
|
| 109 |
-
/* Make file uploader more visible */
|
| 110 |
-
.stFileUploader {
|
| 111 |
-
margin-bottom: 1rem;
|
| 112 |
-
}
|
| 113 |
-
|
| 114 |
-
/* Make camera input more visible */
|
| 115 |
-
.stCameraInput {
|
| 116 |
-
margin-top: 1rem;
|
| 117 |
-
}
|
| 118 |
</style>
|
| 119 |
""", unsafe_allow_html=True)
|
| 120 |
|
|
@@ -145,52 +115,35 @@ FOOD_CLASSES = [
|
|
| 145 |
"sushi", "tacos", "takoyaki", "tiramisu", "tuna_tartare", "waffles"
|
| 146 |
]
|
| 147 |
|
| 148 |
-
# ============================================================
|
| 149 |
-
# HELPER FUNCTIONS
|
| 150 |
-
# ============================================================
|
| 151 |
-
|
| 152 |
-
def get_image_hash(image_bytes):
|
| 153 |
-
"""Create a hash of image bytes to detect if it's a new image."""
|
| 154 |
-
return hashlib.md5(image_bytes).hexdigest()
|
| 155 |
-
|
| 156 |
# ============================================================
|
| 157 |
# MODEL LOADING
|
| 158 |
# ============================================================
|
| 159 |
|
| 160 |
@st.cache_resource
|
| 161 |
def load_model():
|
| 162 |
-
"""
|
| 163 |
-
Loads model from local file or Hugging Face Hub.
|
| 164 |
-
Cached for performance across sessions.
|
| 165 |
-
"""
|
| 166 |
try:
|
| 167 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 168 |
|
| 169 |
-
# Try loading from local file first (for HF Spaces)
|
| 170 |
local_path = Path("model1_best.pth")
|
| 171 |
|
| 172 |
if local_path.exists():
|
| 173 |
-
checkpoint = torch.load(local_path, map_location=device)
|
| 174 |
else:
|
| 175 |
-
# Fallback: try to download from HF Hub
|
| 176 |
try:
|
| 177 |
from huggingface_hub import hf_hub_download
|
| 178 |
model_path = hf_hub_download(
|
| 179 |
repo_id="doozer21/FoodVision",
|
| 180 |
filename="model1_best.pth"
|
| 181 |
)
|
| 182 |
-
checkpoint = torch.load(model_path, map_location=device)
|
| 183 |
-
except Exception
|
| 184 |
-
st.error("β Could not load model from local file or Hugging Face Hub")
|
| 185 |
-
st.info("Make sure model1_best.pth is in your Space's repository")
|
| 186 |
return None, None, None
|
| 187 |
|
| 188 |
-
# Get config
|
| 189 |
model_config = checkpoint.get('model_config', {
|
| 190 |
'model_id': 'convnextv2_base.fcmae_ft_in22k_in1k_384'
|
| 191 |
})
|
| 192 |
|
| 193 |
-
# Create and load model
|
| 194 |
model = timm.create_model(
|
| 195 |
model_config['model_id'],
|
| 196 |
pretrained=False,
|
|
@@ -202,7 +155,6 @@ def load_model():
|
|
| 202 |
model.eval()
|
| 203 |
|
| 204 |
accuracy = checkpoint.get('best_val_acc', 0)
|
| 205 |
-
|
| 206 |
return model, device, accuracy
|
| 207 |
|
| 208 |
except Exception as e:
|
|
@@ -251,6 +203,50 @@ def predict(model, image_tensor, device, top_k=3):
|
|
| 251 |
|
| 252 |
return results
|
| 253 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 254 |
# ============================================================
|
| 255 |
# MAIN APP
|
| 256 |
# ============================================================
|
|
@@ -260,14 +256,14 @@ def main():
|
|
| 260 |
st.title("π FoodVision AI")
|
| 261 |
st.markdown("**Identify 101 food dishes instantly**")
|
| 262 |
|
| 263 |
-
# Load model
|
| 264 |
-
|
| 265 |
-
model, device, accuracy = load_model()
|
| 266 |
|
| 267 |
if model is None:
|
|
|
|
| 268 |
st.stop()
|
| 269 |
|
| 270 |
-
#
|
| 271 |
with st.expander("βΉοΈ Model Info"):
|
| 272 |
st.write(f"**Architecture:** ConvNeXt V2 Base")
|
| 273 |
st.write(f"**Accuracy:** {accuracy:.2f}%")
|
|
@@ -276,149 +272,72 @@ def main():
|
|
| 276 |
|
| 277 |
st.markdown("---")
|
| 278 |
|
| 279 |
-
#
|
| 280 |
-
st.subheader("πΈ
|
| 281 |
-
|
| 282 |
-
# File uploader
|
| 283 |
-
uploaded_file = st.file_uploader(
|
| 284 |
-
"Choose a food image",
|
| 285 |
-
type=['jpg', 'jpeg', 'png', 'webp'],
|
| 286 |
-
key="file_uploader"
|
| 287 |
-
)
|
| 288 |
-
|
| 289 |
-
# Camera input (below uploader)
|
| 290 |
-
st.markdown("**Or use your camera:**")
|
| 291 |
-
camera_photo = st.camera_input(
|
| 292 |
-
"Take a picture",
|
| 293 |
-
key="camera_input"
|
| 294 |
-
)
|
| 295 |
-
|
| 296 |
-
# Determine which image to use
|
| 297 |
-
image_source = None
|
| 298 |
-
source_name = ""
|
| 299 |
-
image_bytes = None
|
| 300 |
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
source_name = "camera"
|
| 304 |
-
image_bytes = camera_photo.getvalue()
|
| 305 |
-
elif uploaded_file is not None:
|
| 306 |
-
image_source = uploaded_file
|
| 307 |
-
source_name = "upload"
|
| 308 |
-
image_bytes = uploaded_file.getvalue()
|
| 309 |
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
image = Image.open(
|
| 320 |
-
|
| 321 |
-
# Store image in session state
|
| 322 |
-
st.session_state.processed_image = image
|
| 323 |
-
st.session_state.last_image_hash = current_hash
|
| 324 |
|
| 325 |
-
|
| 326 |
-
with st.spinner("π§ Analyzing your food..."):
|
| 327 |
-
# Preprocess and predict
|
| 328 |
img_tensor = preprocess_image(image)
|
| 329 |
predictions = predict(model, img_tensor, device, top_k=3)
|
| 330 |
-
|
| 331 |
-
# Store predictions in session state
|
| 332 |
-
st.session_state.predictions = predictions
|
| 333 |
-
|
| 334 |
-
# Display results (from session state)
|
| 335 |
-
if st.session_state.processed_image is not None:
|
| 336 |
-
# Show image preview
|
| 337 |
-
st.image(
|
| 338 |
-
st.session_state.processed_image,
|
| 339 |
-
caption=f"Image from {source_name}",
|
| 340 |
-
use_column_width=True
|
| 341 |
-
)
|
| 342 |
-
|
| 343 |
-
if st.session_state.predictions is not None:
|
| 344 |
-
st.markdown("---")
|
| 345 |
|
| 346 |
-
|
| 347 |
-
top_food, top_conf = st.session_state.predictions[0]
|
| 348 |
|
| 349 |
-
|
| 350 |
-
|
| 351 |
-
|
| 352 |
-
|
| 353 |
-
|
| 354 |
-
|
| 355 |
-
|
| 356 |
-
|
| 357 |
-
|
|
|
|
| 358 |
|
| 359 |
-
|
| 360 |
-
|
| 361 |
-
|
| 362 |
-
st.markdown(f"**{emoji} {food}**")
|
| 363 |
-
st.markdown(f"""
|
| 364 |
-
<div class="conf-bar">
|
| 365 |
-
<div class="conf-fill" style="width: {conf}%">
|
| 366 |
-
{conf:.1f}%
|
| 367 |
-
</div>
|
| 368 |
-
</div>
|
| 369 |
-
""", unsafe_allow_html=True)
|
| 370 |
|
| 371 |
-
|
| 372 |
-
st.markdown("---")
|
| 373 |
-
if top_conf > 90:
|
| 374 |
-
st.success("π **Very confident!** The model is very sure about this prediction.")
|
| 375 |
-
elif top_conf > 70:
|
| 376 |
-
st.success("π **Good confidence!** This looks like a solid prediction.")
|
| 377 |
-
elif top_conf > 50:
|
| 378 |
-
st.warning("π€ **Moderate confidence.** The food might be ambiguous or partially visible.")
|
| 379 |
-
else:
|
| 380 |
-
st.warning("π **Low confidence.** Try a clearer photo with better lighting.")
|
| 381 |
|
| 382 |
-
|
| 383 |
-
|
| 384 |
-
st.session_state.predictions = None
|
| 385 |
-
st.session_state.processed_image = None
|
| 386 |
-
st.session_state.last_image_hash = None
|
| 387 |
-
st.rerun()
|
| 388 |
-
|
| 389 |
-
except Exception as e:
|
| 390 |
-
st.error(f"β Error: {str(e)}")
|
| 391 |
-
st.info("Try a different image or check if the file is corrupted")
|
| 392 |
-
|
| 393 |
-
# Reset state on error
|
| 394 |
-
st.session_state.predictions = None
|
| 395 |
-
st.session_state.processed_image = None
|
| 396 |
-
st.session_state.last_image_hash = None
|
| 397 |
|
| 398 |
-
|
| 399 |
-
|
| 400 |
-
|
| 401 |
-
|
| 402 |
-
|
| 403 |
-
|
| 404 |
-
|
| 405 |
-
|
| 406 |
-
|
| 407 |
-
|
| 408 |
-
|
| 409 |
-
|
| 410 |
-
|
| 411 |
-
|
| 412 |
-
|
| 413 |
-
|
| 414 |
-
|
| 415 |
-
|
| 416 |
-
|
| 417 |
-
|
| 418 |
-
|
| 419 |
-
|
| 420 |
-
- And many more!
|
| 421 |
-
""")
|
| 422 |
|
| 423 |
# Footer
|
| 424 |
st.markdown("---")
|
|
|
|
| 4 |
# IMPROVEMENTS:
|
| 5 |
# -------------
|
| 6 |
# β
Mobile-friendly single-column layout
|
| 7 |
+
# β
SIMPLIFIED: No session state complexity
|
| 8 |
+
# β
Direct processing on every upload
|
| 9 |
+
# β
Works reliably on mobile
|
| 10 |
+
# β
No unnecessary buttons
|
|
|
|
|
|
|
|
|
|
| 11 |
#
|
| 12 |
# ============================================================
|
| 13 |
|
|
|
|
| 18 |
from PIL import Image
|
| 19 |
import timm
|
| 20 |
from pathlib import Path
|
|
|
|
| 21 |
|
| 22 |
# ============================================================
|
| 23 |
# PAGE CONFIGURATION
|
|
|
|
| 30 |
initial_sidebar_state="collapsed"
|
| 31 |
)
|
| 32 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
# ============================================================
|
| 34 |
# MINIMAL CSS (Mobile-First)
|
| 35 |
# ============================================================
|
| 36 |
|
| 37 |
st.markdown("""
|
| 38 |
<style>
|
|
|
|
| 39 |
.block-container {
|
| 40 |
padding-top: 2rem;
|
| 41 |
padding-bottom: 2rem;
|
| 42 |
}
|
| 43 |
|
|
|
|
| 44 |
h1 {
|
| 45 |
text-align: center;
|
| 46 |
color: #FF6B6B;
|
| 47 |
margin-bottom: 0.5rem;
|
| 48 |
}
|
| 49 |
|
|
|
|
| 50 |
.prediction-card {
|
| 51 |
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
|
| 52 |
padding: 1.5rem;
|
|
|
|
| 67 |
opacity: 0.9;
|
| 68 |
}
|
| 69 |
|
|
|
|
| 70 |
.conf-bar {
|
| 71 |
background: #f0f0f0;
|
| 72 |
border-radius: 8px;
|
| 73 |
height: 36px;
|
| 74 |
margin: 0.5rem 0;
|
| 75 |
overflow: hidden;
|
|
|
|
| 76 |
}
|
| 77 |
|
| 78 |
.conf-fill {
|
|
|
|
| 85 |
font-weight: 600;
|
| 86 |
font-size: 0.95rem;
|
| 87 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
</style>
|
| 89 |
""", unsafe_allow_html=True)
|
| 90 |
|
|
|
|
| 115 |
"sushi", "tacos", "takoyaki", "tiramisu", "tuna_tartare", "waffles"
|
| 116 |
]
|
| 117 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 118 |
# ============================================================
|
| 119 |
# MODEL LOADING
|
| 120 |
# ============================================================
|
| 121 |
|
| 122 |
@st.cache_resource
|
| 123 |
def load_model():
|
| 124 |
+
"""Loads model from local file or Hugging Face Hub."""
|
|
|
|
|
|
|
|
|
|
| 125 |
try:
|
| 126 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 127 |
|
|
|
|
| 128 |
local_path = Path("model1_best.pth")
|
| 129 |
|
| 130 |
if local_path.exists():
|
| 131 |
+
checkpoint = torch.load(local_path, map_location=device, weights_only=False)
|
| 132 |
else:
|
|
|
|
| 133 |
try:
|
| 134 |
from huggingface_hub import hf_hub_download
|
| 135 |
model_path = hf_hub_download(
|
| 136 |
repo_id="doozer21/FoodVision",
|
| 137 |
filename="model1_best.pth"
|
| 138 |
)
|
| 139 |
+
checkpoint = torch.load(model_path, map_location=device, weights_only=False)
|
| 140 |
+
except Exception:
|
|
|
|
|
|
|
| 141 |
return None, None, None
|
| 142 |
|
|
|
|
| 143 |
model_config = checkpoint.get('model_config', {
|
| 144 |
'model_id': 'convnextv2_base.fcmae_ft_in22k_in1k_384'
|
| 145 |
})
|
| 146 |
|
|
|
|
| 147 |
model = timm.create_model(
|
| 148 |
model_config['model_id'],
|
| 149 |
pretrained=False,
|
|
|
|
| 155 |
model.eval()
|
| 156 |
|
| 157 |
accuracy = checkpoint.get('best_val_acc', 0)
|
|
|
|
| 158 |
return model, device, accuracy
|
| 159 |
|
| 160 |
except Exception as e:
|
|
|
|
| 203 |
|
| 204 |
return results
|
| 205 |
|
| 206 |
+
# ============================================================
|
| 207 |
+
# DISPLAY RESULTS
|
| 208 |
+
# ============================================================
|
| 209 |
+
|
| 210 |
+
def display_results(predictions):
|
| 211 |
+
"""Display prediction results."""
|
| 212 |
+
st.markdown("---")
|
| 213 |
+
|
| 214 |
+
# Top prediction
|
| 215 |
+
top_food, top_conf = predictions[0]
|
| 216 |
+
|
| 217 |
+
st.markdown(f"""
|
| 218 |
+
<div class="prediction-card">
|
| 219 |
+
<h2>π {top_food}</h2>
|
| 220 |
+
<h3>{top_conf:.1f}% Confidence</h3>
|
| 221 |
+
</div>
|
| 222 |
+
""", unsafe_allow_html=True)
|
| 223 |
+
|
| 224 |
+
# Top 3 predictions
|
| 225 |
+
st.markdown("### π Top 3 Predictions")
|
| 226 |
+
|
| 227 |
+
for i, (food, conf) in enumerate(predictions, 1):
|
| 228 |
+
emoji = "π₯" if i == 1 else "π₯" if i == 2 else "π₯"
|
| 229 |
+
|
| 230 |
+
st.markdown(f"**{emoji} {food}**")
|
| 231 |
+
st.markdown(f"""
|
| 232 |
+
<div class="conf-bar">
|
| 233 |
+
<div class="conf-fill" style="width: {conf}%">
|
| 234 |
+
{conf:.1f}%
|
| 235 |
+
</div>
|
| 236 |
+
</div>
|
| 237 |
+
""", unsafe_allow_html=True)
|
| 238 |
+
|
| 239 |
+
# Feedback
|
| 240 |
+
st.markdown("---")
|
| 241 |
+
if top_conf > 90:
|
| 242 |
+
st.success("π **Very confident!** The model is very sure.")
|
| 243 |
+
elif top_conf > 70:
|
| 244 |
+
st.success("π **Good confidence!** Solid prediction.")
|
| 245 |
+
elif top_conf > 50:
|
| 246 |
+
st.warning("π€ **Moderate confidence.** Food might be ambiguous.")
|
| 247 |
+
else:
|
| 248 |
+
st.warning("π **Low confidence.** Try a clearer photo.")
|
| 249 |
+
|
| 250 |
# ============================================================
|
| 251 |
# MAIN APP
|
| 252 |
# ============================================================
|
|
|
|
| 256 |
st.title("π FoodVision AI")
|
| 257 |
st.markdown("**Identify 101 food dishes instantly**")
|
| 258 |
|
| 259 |
+
# Load model
|
| 260 |
+
model, device, accuracy = load_model()
|
|
|
|
| 261 |
|
| 262 |
if model is None:
|
| 263 |
+
st.error("β Could not load model. Check if model1_best.pth exists.")
|
| 264 |
st.stop()
|
| 265 |
|
| 266 |
+
# Model info
|
| 267 |
with st.expander("βΉοΈ Model Info"):
|
| 268 |
st.write(f"**Architecture:** ConvNeXt V2 Base")
|
| 269 |
st.write(f"**Accuracy:** {accuracy:.2f}%")
|
|
|
|
| 272 |
|
| 273 |
st.markdown("---")
|
| 274 |
|
| 275 |
+
# Input section
|
| 276 |
+
st.subheader("πΈ Choose Your Input Method")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 277 |
|
| 278 |
+
# Tab-based approach (better for mobile)
|
| 279 |
+
tab1, tab2 = st.tabs(["π Upload Image", "π· Take Photo"])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 280 |
|
| 281 |
+
with tab1:
|
| 282 |
+
uploaded_file = st.file_uploader(
|
| 283 |
+
"Select a food image",
|
| 284 |
+
type=['jpg', 'jpeg', 'png', 'webp'],
|
| 285 |
+
label_visibility="collapsed"
|
| 286 |
+
)
|
| 287 |
+
|
| 288 |
+
if uploaded_file is not None:
|
| 289 |
+
try:
|
| 290 |
+
image = Image.open(uploaded_file)
|
| 291 |
+
st.image(image, caption="Uploaded Image", use_column_width=True)
|
|
|
|
|
|
|
|
|
|
| 292 |
|
| 293 |
+
with st.spinner("π§ Analyzing..."):
|
|
|
|
|
|
|
| 294 |
img_tensor = preprocess_image(image)
|
| 295 |
predictions = predict(model, img_tensor, device, top_k=3)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 296 |
|
| 297 |
+
display_results(predictions)
|
|
|
|
| 298 |
|
| 299 |
+
except Exception as e:
|
| 300 |
+
st.error(f"β Error: {str(e)}")
|
| 301 |
+
|
| 302 |
+
with tab2:
|
| 303 |
+
camera_photo = st.camera_input("Take a picture", label_visibility="collapsed")
|
| 304 |
+
|
| 305 |
+
if camera_photo is not None:
|
| 306 |
+
try:
|
| 307 |
+
image = Image.open(camera_photo)
|
| 308 |
+
st.image(image, caption="Camera Photo", use_column_width=True)
|
| 309 |
|
| 310 |
+
with st.spinner("π§ Analyzing..."):
|
| 311 |
+
img_tensor = preprocess_image(image)
|
| 312 |
+
predictions = predict(model, img_tensor, device, top_k=3)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 313 |
|
| 314 |
+
display_results(predictions)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 315 |
|
| 316 |
+
except Exception as e:
|
| 317 |
+
st.error(f"β Error: {str(e)}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 318 |
|
| 319 |
+
# Instructions (show at bottom when no image)
|
| 320 |
+
if uploaded_file is None and camera_photo is None:
|
| 321 |
+
st.info("π Choose a tab above to get started!")
|
| 322 |
+
|
| 323 |
+
with st.expander("π‘ Tips for Best Results"):
|
| 324 |
+
st.markdown("""
|
| 325 |
+
- Use clear, well-lit photos
|
| 326 |
+
- Make sure food is the main subject
|
| 327 |
+
- Avoid heavily filtered images
|
| 328 |
+
- Try different angles if confidence is low
|
| 329 |
+
""")
|
| 330 |
+
|
| 331 |
+
with st.expander("π½οΈ What can it recognize?"):
|
| 332 |
+
st.markdown("""
|
| 333 |
+
**101 popular dishes** including:
|
| 334 |
+
- π Pizza, Pasta, Burgers
|
| 335 |
+
- π£ Sushi, Ramen, Pad Thai
|
| 336 |
+
- π₯ Salads, Sandwiches
|
| 337 |
+
- π° Desserts (cakes, ice cream)
|
| 338 |
+
- π³ Breakfast foods
|
| 339 |
+
- And many more!
|
| 340 |
+
""")
|
|
|
|
|
|
|
| 341 |
|
| 342 |
# Footer
|
| 343 |
st.markdown("---")
|