File size: 18,702 Bytes
2811ff1 6054b77 ffc8ed8 6054b77 2811ff1 b233a23 4ad4863 b233a23 4ad4863 2811ff1 b233a23 6054b77 b233a23 4ad4863 b233a23 855952e 4ad4863 b233a23 4ad4863 b233a23 855952e 4ad4863 b233a23 4ad4863 b233a23 4ad4863 b233a23 2811ff1 4ad4863 b233a23 ffc8ed8 4ad4863 ffc8ed8 4ad4863 b233a23 4ad4863 b233a23 2811ff1 4ad4863 b233a23 4ad4863 b233a23 4ad4863 b233a23 4ad4863 b233a23 4ad4863 b233a23 2811ff1 b233a23 4ad4863 b233a23 4ad4863 b233a23 ffc8ed8 b233a23 4ad4863 b233a23 4ad4863 b233a23 4ad4863 b233a23 4ad4863 b233a23 4ad4863 b233a23 4ad4863 b233a23 4ad4863 b233a23 4ad4863 b233a23 ffc8ed8 b233a23 4ad4863 b233a23 4ad4863 b233a23 4ad4863 b233a23 4ad4863 b233a23 4ad4863 b233a23 2811ff1 ffc8ed8 4ad4863 ffc8ed8 4ad4863 ffc8ed8 4ad4863 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 |
import pandas as pd
from dash import html, dcc
from dash_iconify import DashIconify
import dash_mantine_components as dmc
import base64
button_style = {
"display": "inline-block",
"marginBottom": "10px",
"marginRight": "15px",
"marginTop": "30px",
"padding": "6px 16px",
"backgroundColor": "#082030",
"color": "white",
"borderRadius": "6px",
"textDecoration": "none",
"fontWeight": "bold",
"fontSize": "14px",
}
country_icon_map = {
"USA": "๐บ๐ธ",
"China": "๐จ๐ณ",
"Germany": "๐ฉ๐ช",
"France": "๐ซ๐ท",
"India": "๐ฎ๐ณ",
"Italy": "๐ฎ๐น",
"Japan": "๐ฏ๐ต",
"South Korea": "๐ฐ๐ท",
"United Kingdom": "๐ฌ๐ง",
"Canada": "๐จ๐ฆ",
"Brazil": "๐ง๐ท",
"Australia": "๐ฆ๐บ",
"Unknown": "โ",
"Finland": "๐ซ๐ฎ",
"Lebanon": "๐ฑ๐ง",
"Iceland": "๐ฎ๐ธ",
"Singapore": "๐ธ๐ฌ",
"Israel": "๐ฎ๐ฑ",
"Iran": "๐ฎ๐ท",
"Hong Kong": "๐ญ๐ฐ",
"Netherlands": "๐ณ๐ฑ",
"Chile": "๐จ๐ฑ",
"Vietnam": "๐ป๐ณ",
"Russia": "๐ท๐บ",
"Qatar": "๐ถ๐ฆ",
"Switzerland": "๐จ๐ญ",
"User": "๐ค",
"International/Online": "๐",
}
company_icon_map = {
"google": "../assets/icons/google.png",
"distilbert": "../assets/icons/hugging-face.png",
"sentence-transformers": "../assets/icons/hugging-face.png",
"facebook": "../assets/icons/meta.png",
"openai": "../assets/icons/openai.png",
}
meta_cols_map = {
"org_country_single": ["org_country_single"],
"author": ["org_country_single", "author", "merged_country_groups_single"],
"model": [
"org_country_single",
"author",
"merged_country_groups_single",
"merged_modality",
"downloads",
],
}
# Chip renderer
def chip(text, bg_color="#F0F0F0"):
return html.Span(
text,
style={
"backgroundColor": bg_color,
"padding": "4px 10px",
"borderRadius": "12px",
"margin": "2px",
"display": "inline-flex",
"alignItems": "center",
"fontSize": "14px",
},
)
# Progress bar for % of total
def progress_bar(percent, bar_color="#082030"):
return html.Div(
style={
"position": "relative",
"backgroundColor": "#E0E0E0",
"borderRadius": "8px",
"height": "20px",
"width": "100%",
"overflow": "hidden",
},
children=[
html.Div(
style={
"backgroundColor": bar_color,
"width": f"{percent}%",
"height": "100%",
"borderRadius": "8px",
"transition": "width 0.5s",
}
),
html.Div(
f"{percent:.1f}%",
style={
"position": "absolute",
"top": 0,
"left": "50%",
"transform": "translateX(-50%)",
"color": "black",
"fontWeight": "bold",
"fontSize": "12px",
"lineHeight": "20px",
"textAlign": "center",
},
),
],
)
# Helper to convert DataFrame to CSV and encode for download
def df_to_download_link(df, filename):
csv_string = df.to_csv(index=False)
b64 = base64.b64encode(csv_string.encode()).decode()
return html.Div(
html.A(
children=dmc.ActionIcon(
DashIconify(icon="mdi:download", width=24),
size="lg",
color="#082030",
),
id=f"download-{filename}",
download=f"{filename}.csv",
href=f"data:text/csv;base64,{b64}",
target="_blank",
title="Download CSV",
style={
"padding": "6px 12px",
"display": "inline-flex",
"alignItems": "center",
"justifyContent": "center",
},
),
style={"textAlign": "right"},
)
# Render multiple chips in one row
def render_chips(metadata_list, chip_color):
chips = []
for icon, name in metadata_list:
if isinstance(icon, str) and icon.endswith((".png", ".jpg", ".jpeg", ".svg")):
chips.append(
html.Span(
[
html.Img(
src=icon, style={"height": "18px", "marginRight": "6px"}
),
name,
],
style={
"backgroundColor": chip_color,
"padding": "4px 10px",
"borderRadius": "12px",
"margin": "2px",
"display": "inline-flex",
"alignItems": "left",
"fontSize": "14px",
},
)
)
else:
chips.append(chip(f"{icon} {name}", chip_color))
return html.Div(
chips, style={"display": "flex", "flexWrap": "wrap", "justifyContent": "left"}
)
def render_table_content(
df, download_df, chip_color, bar_color="#082030", filename="data"
):
return html.Div(
[
html.Table(
[
html.Thead(
html.Tr(
[
html.Th(
"Rank",
style={
"backgroundColor": "#F0F0F0",
"textAlign": "left",
},
),
html.Th(
"Name",
style={
"backgroundColor": "#F0F0F0",
"textAlign": "left",
},
),
html.Th(
"Metadata",
style={
"backgroundColor": "#F0F0F0",
"textAlign": "left",
"marginRight": "10px",
},
),
html.Th(
"% of Total",
style={
"backgroundColor": "#F0F0F0",
"textAlign": "left",
},
),
]
)
),
html.Tbody(
[
html.Tr(
[
html.Td(idx + 1, style={"textAlign": "center"}),
html.Td(row["Name"], style={"textAlign": "left"}),
html.Td(render_chips(row["Metadata"], chip_color)),
html.Td(
progress_bar(row["% of total"], bar_color),
style={"textAlign": "center"},
),
]
)
for idx, row in df.iterrows()
]
),
],
style={"borderCollapse": "collapse", "width": "100%"},
),
]
)
# Table renderer
def render_table(
df, download_df, title, chip_color, bar_color="#AC482A", filename="data"
):
return html.Div(
id=f"{filename}-div",
children=[
html.Div(
[
html.H4(
title,
style={
"textAlign": "left",
"marginBottom": "10px",
"fontSize": "20px",
"display": "inline-block",
},
),
df_to_download_link(download_df, filename),
],
style={
"display": "flex",
"alignItems": "center",
"justifyContent": "space-between",
},
),
html.Div(
id=f"{filename}-table",
children=[
html.Table(
[
html.Thead(
html.Tr(
[
html.Th(
"Rank",
style={
"backgroundColor": "#F0F0F0",
"textAlign": "left",
},
),
html.Th(
"Name",
style={
"backgroundColor": "#F0F0F0",
"textAlign": "left",
},
),
html.Th(
"Metadata",
style={
"backgroundColor": "#F0F0F0",
"textAlign": "left",
"marginRight": "10px",
},
),
html.Th(
"% of Total",
style={
"backgroundColor": "#F0F0F0",
"textAlign": "left",
},
),
]
)
),
html.Tbody(
[
html.Tr(
[
html.Td(
idx + 1, style={"textAlign": "center"}
),
html.Td(
row["Name"], style={"textAlign": "left"}
),
html.Td(
render_chips(
row["Metadata"], chip_color
)
),
html.Td(
progress_bar(
row["% of total"], bar_color
),
style={"textAlign": "center"},
),
]
)
for idx, row in df.iterrows()
]
),
],
style={
"borderCollapse": "collapse",
"width": "100%",
"border": "none",
},
),
],
),
dcc.Loading(
id=f"loading-{filename}-toggle",
type="dot",
color="#082030",
children=html.Div(
[
html.Button(
"โผ Show Top 50",
id=f"{filename}-toggle",
n_clicks=0,
style={**button_style, "border": "none"},
)
],
style={"marginTop": "5px", "textAlign": "left"},
),
),
],
style={"marginBottom": "20px"},
)
# Function to get top N leaderboard
def get_top_n_leaderboard(filtered_df, group_col, top_n=10):
top = (
filtered_df.groupby(group_col)["downloads"]
.sum()
.nlargest(top_n)
.reset_index()
.rename(columns={group_col: "Name", "downloads": "Total Value"})
)
total_value = top["Total Value"].sum()
top["% of total"] = top["Total Value"] / total_value * 100 if total_value else 0
# Create a downloadable version of the leaderboard
download_top = top.copy()
download_top["Total Value"] = download_top["Total Value"].astype(int)
download_top["% of total"] = download_top["% of total"].round(2)
top["Name"].replace("User", "user")
# All relevant metadata columns
meta_cols = meta_cols_map.get(group_col, [])
# Collect all metadata per top n for each category (country, author, model)
meta_map = {}
download_map = {}
for name in top["Name"]:
name_data = filtered_df[filtered_df[group_col] == name]
meta_map[name] = {}
download_map[name] = {}
for col in meta_cols:
if col in name_data.columns:
unique_vals = name_data[col].unique()
meta_map[name][col] = list(unique_vals)
download_map[name][col] = list(unique_vals)
# Function to build metadata chips
def build_metadata(nm):
meta = meta_map.get(nm, {})
chips = []
# Countries
for c in meta.get("org_country_single", []):
if c == "United States of America":
c = "USA"
if c == "user":
c = "User"
chips.append((country_icon_map.get(c, ""), c))
# Author
for a in meta.get("author", []):
icon = company_icon_map.get(a, "")
if icon == "":
if meta.get("merged_country_groups_single", ["User"])[0] != "User":
icon = "๐ข"
else:
icon = "๐ค"
chips.append((icon, a))
# Downloads
# Sum downloads if multiple entries
total_downloads = sum(
d for d in meta.get("downloads", []) if pd.notna(d)
) # Check if d is not NaN
if total_downloads:
chips.append(("โฌ๏ธ", f"{int(total_downloads):,}"))
# Modality
for m in meta.get("merged_modality", []):
chips.append(("", m))
# Estimated Parameters
for p in meta.get("estimated_parameters", []):
if pd.notna(p): # Check if p is not NaN
if p >= 1e9:
p_str = f"{p / 1e9:.1f}B"
elif p >= 1e6:
p_str = f"{p / 1e6:.1f}M"
elif p >= 1e3:
p_str = f"{p / 1e3:.1f}K"
else:
p_str = str(p)
chips.append(("โ๏ธ", p_str))
return chips
# Function to create downloadable dataframe
def build_download_metadata(nm):
meta = download_map.get(nm, {})
download_info = {}
for col in meta_cols:
# don't add empty columns
if col not in meta or not meta[col]:
continue
vals = meta.get(col, [])
if vals:
# Join list into a single string for CSV
download_info[col] = ", ".join(str(v) for v in vals)
else:
download_info[col] = ""
return download_info
# Apply metadata builder to top dataframe
top["Metadata"] = top["Name"].astype(object).apply(build_metadata)
download_info_list = [build_download_metadata(nm) for nm in download_top["Name"]]
download_info_df = pd.DataFrame(download_info_list)
download_top = pd.concat([download_top, download_info_df], axis=1)
return top[["Name", "Metadata", "% of total"]], download_top
def create_leaderboard(filtered_df, board_type, top_n=10):
if filtered_df.empty:
return html.Div("No data in selected range")
# Merge HF and USA
filtered_df["org_country_single"] = filtered_df["org_country_single"].replace(
{"HF": "United States of America"}
)
# Merge International and Online
filtered_df["org_country_single"] = filtered_df["org_country_single"].replace(
{"International": "International/Online", "Online": "International/Online"}
)
# Build leaderboards
top_countries, download_top_countries = get_top_n_leaderboard(
filtered_df, "org_country_single", top_n
)
top_developers, download_top_developers = get_top_n_leaderboard(
filtered_df, "author", top_n
)
top_models, download_top_models = get_top_n_leaderboard(filtered_df, "model", top_n)
if board_type == "countries":
return render_table(
top_countries,
download_top_countries,
"Top Countries",
chip_color="#F0F9FF",
bar_color="#082030",
filename="top_countries",
)
elif board_type == "developers":
return render_table(
top_developers,
download_top_developers,
"Top Developers",
chip_color="#F0F9FF",
bar_color="#082030",
filename="top_developers",
)
else:
return render_table(
top_models,
download_top_models,
"Top Models",
chip_color="#F0F9FF",
bar_color="#082030",
filename="top_models",
)
|