File size: 18,702 Bytes
2811ff1
6054b77
ffc8ed8
 
6054b77
2811ff1
b233a23
4ad4863
 
 
 
 
 
 
 
 
 
 
 
b233a23
 
4ad4863
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2811ff1
b233a23
 
 
 
 
 
 
6054b77
b233a23
 
 
4ad4863
 
 
 
 
 
 
b233a23
855952e
4ad4863
b233a23
 
 
 
 
 
 
 
 
 
 
4ad4863
 
b233a23
855952e
4ad4863
b233a23
4ad4863
b233a23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ad4863
 
 
b233a23
2811ff1
4ad4863
b233a23
 
 
 
 
 
ffc8ed8
 
4ad4863
 
ffc8ed8
 
 
 
 
 
4ad4863
 
 
 
 
 
b233a23
4ad4863
b233a23
2811ff1
4ad4863
b233a23
4ad4863
b233a23
 
4ad4863
b233a23
4ad4863
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b233a23
 
 
 
4ad4863
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b233a23
2811ff1
 
b233a23
4ad4863
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b233a23
 
 
4ad4863
 
 
 
 
 
 
b233a23
 
 
 
 
 
 
 
ffc8ed8
b233a23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ad4863
b233a23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ad4863
 
 
b233a23
 
 
 
 
 
4ad4863
b233a23
 
 
 
4ad4863
b233a23
4ad4863
b233a23
4ad4863
b233a23
 
 
 
4ad4863
b233a23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ad4863
b233a23
ffc8ed8
b233a23
 
 
 
 
 
 
4ad4863
b233a23
 
4ad4863
b233a23
4ad4863
 
 
b233a23
4ad4863
 
 
b233a23
 
4ad4863
 
 
 
 
 
b233a23
2811ff1
ffc8ed8
4ad4863
 
 
 
 
 
 
 
ffc8ed8
4ad4863
 
 
 
 
 
 
 
ffc8ed8
4ad4863
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
import pandas as pd
from dash import html, dcc
from dash_iconify import DashIconify
import dash_mantine_components as dmc
import base64

button_style = {
    "display": "inline-block",
    "marginBottom": "10px",
    "marginRight": "15px",
    "marginTop": "30px",
    "padding": "6px 16px",
    "backgroundColor": "#082030",
    "color": "white",
    "borderRadius": "6px",
    "textDecoration": "none",
    "fontWeight": "bold",
    "fontSize": "14px",
}

country_icon_map = {
    "USA": "๐Ÿ‡บ๐Ÿ‡ธ",
    "China": "๐Ÿ‡จ๐Ÿ‡ณ",
    "Germany": "๐Ÿ‡ฉ๐Ÿ‡ช",
    "France": "๐Ÿ‡ซ๐Ÿ‡ท",
    "India": "๐Ÿ‡ฎ๐Ÿ‡ณ",
    "Italy": "๐Ÿ‡ฎ๐Ÿ‡น",
    "Japan": "๐Ÿ‡ฏ๐Ÿ‡ต",
    "South Korea": "๐Ÿ‡ฐ๐Ÿ‡ท",
    "United Kingdom": "๐Ÿ‡ฌ๐Ÿ‡ง",
    "Canada": "๐Ÿ‡จ๐Ÿ‡ฆ",
    "Brazil": "๐Ÿ‡ง๐Ÿ‡ท",
    "Australia": "๐Ÿ‡ฆ๐Ÿ‡บ",
    "Unknown": "โ“",
    "Finland": "๐Ÿ‡ซ๐Ÿ‡ฎ",
    "Lebanon": "๐Ÿ‡ฑ๐Ÿ‡ง",
    "Iceland": "๐Ÿ‡ฎ๐Ÿ‡ธ",
    "Singapore": "๐Ÿ‡ธ๐Ÿ‡ฌ",
    "Israel": "๐Ÿ‡ฎ๐Ÿ‡ฑ",
    "Iran": "๐Ÿ‡ฎ๐Ÿ‡ท",
    "Hong Kong": "๐Ÿ‡ญ๐Ÿ‡ฐ",
    "Netherlands": "๐Ÿ‡ณ๐Ÿ‡ฑ",
    "Chile": "๐Ÿ‡จ๐Ÿ‡ฑ",
    "Vietnam": "๐Ÿ‡ป๐Ÿ‡ณ",
    "Russia": "๐Ÿ‡ท๐Ÿ‡บ",
    "Qatar": "๐Ÿ‡ถ๐Ÿ‡ฆ",
    "Switzerland": "๐Ÿ‡จ๐Ÿ‡ญ",
    "User": "๐Ÿ‘ค",
    "International/Online": "๐ŸŒ",
}

company_icon_map = {
    "google": "../assets/icons/google.png",
    "distilbert": "../assets/icons/hugging-face.png",
    "sentence-transformers": "../assets/icons/hugging-face.png",
    "facebook": "../assets/icons/meta.png",
    "openai": "../assets/icons/openai.png",
}

meta_cols_map = {
    "org_country_single": ["org_country_single"],
    "author": ["org_country_single", "author", "merged_country_groups_single"],
    "model": [
        "org_country_single",
        "author",
        "merged_country_groups_single",
        "merged_modality",
        "downloads",
    ],
}


# Chip renderer
def chip(text, bg_color="#F0F0F0"):
    return html.Span(
        text,
        style={
            "backgroundColor": bg_color,
            "padding": "4px 10px",
            "borderRadius": "12px",
            "margin": "2px",
            "display": "inline-flex",
            "alignItems": "center",
            "fontSize": "14px",
        },
    )


# Progress bar for % of total
def progress_bar(percent, bar_color="#082030"):
    return html.Div(
        style={
            "position": "relative",
            "backgroundColor": "#E0E0E0",
            "borderRadius": "8px",
            "height": "20px",
            "width": "100%",
            "overflow": "hidden",
        },
        children=[
            html.Div(
                style={
                    "backgroundColor": bar_color,
                    "width": f"{percent}%",
                    "height": "100%",
                    "borderRadius": "8px",
                    "transition": "width 0.5s",
                }
            ),
            html.Div(
                f"{percent:.1f}%",
                style={
                    "position": "absolute",
                    "top": 0,
                    "left": "50%",
                    "transform": "translateX(-50%)",
                    "color": "black",
                    "fontWeight": "bold",
                    "fontSize": "12px",
                    "lineHeight": "20px",
                    "textAlign": "center",
                },
            ),
        ],
    )


# Helper to convert DataFrame to CSV and encode for download
def df_to_download_link(df, filename):
    csv_string = df.to_csv(index=False)
    b64 = base64.b64encode(csv_string.encode()).decode()
    return html.Div(
        html.A(
            children=dmc.ActionIcon(
                DashIconify(icon="mdi:download", width=24),
                size="lg",
                color="#082030",
            ),
            id=f"download-{filename}",
            download=f"{filename}.csv",
            href=f"data:text/csv;base64,{b64}",
            target="_blank",
            title="Download CSV",
            style={
                "padding": "6px 12px",
                "display": "inline-flex",
                "alignItems": "center",
                "justifyContent": "center",
            },
        ),
        style={"textAlign": "right"},
    )


# Render multiple chips in one row
def render_chips(metadata_list, chip_color):
    chips = []
    for icon, name in metadata_list:
        if isinstance(icon, str) and icon.endswith((".png", ".jpg", ".jpeg", ".svg")):
            chips.append(
                html.Span(
                    [
                        html.Img(
                            src=icon, style={"height": "18px", "marginRight": "6px"}
                        ),
                        name,
                    ],
                    style={
                        "backgroundColor": chip_color,
                        "padding": "4px 10px",
                        "borderRadius": "12px",
                        "margin": "2px",
                        "display": "inline-flex",
                        "alignItems": "left",
                        "fontSize": "14px",
                    },
                )
            )
        else:
            chips.append(chip(f"{icon} {name}", chip_color))
    return html.Div(
        chips, style={"display": "flex", "flexWrap": "wrap", "justifyContent": "left"}
    )


def render_table_content(
    df, download_df, chip_color, bar_color="#082030", filename="data"
):
    return html.Div(
        [
            html.Table(
                [
                    html.Thead(
                        html.Tr(
                            [
                                html.Th(
                                    "Rank",
                                    style={
                                        "backgroundColor": "#F0F0F0",
                                        "textAlign": "left",
                                    },
                                ),
                                html.Th(
                                    "Name",
                                    style={
                                        "backgroundColor": "#F0F0F0",
                                        "textAlign": "left",
                                    },
                                ),
                                html.Th(
                                    "Metadata",
                                    style={
                                        "backgroundColor": "#F0F0F0",
                                        "textAlign": "left",
                                        "marginRight": "10px",
                                    },
                                ),
                                html.Th(
                                    "% of Total",
                                    style={
                                        "backgroundColor": "#F0F0F0",
                                        "textAlign": "left",
                                    },
                                ),
                            ]
                        )
                    ),
                    html.Tbody(
                        [
                            html.Tr(
                                [
                                    html.Td(idx + 1, style={"textAlign": "center"}),
                                    html.Td(row["Name"], style={"textAlign": "left"}),
                                    html.Td(render_chips(row["Metadata"], chip_color)),
                                    html.Td(
                                        progress_bar(row["% of total"], bar_color),
                                        style={"textAlign": "center"},
                                    ),
                                ]
                            )
                            for idx, row in df.iterrows()
                        ]
                    ),
                ],
                style={"borderCollapse": "collapse", "width": "100%"},
            ),
        ]
    )


# Table renderer
def render_table(
    df, download_df, title, chip_color, bar_color="#AC482A", filename="data"
):
    return html.Div(
        id=f"{filename}-div",
        children=[
            html.Div(
                [
                    html.H4(
                        title,
                        style={
                            "textAlign": "left",
                            "marginBottom": "10px",
                            "fontSize": "20px",
                            "display": "inline-block",
                        },
                    ),
                    df_to_download_link(download_df, filename),
                ],
                style={
                    "display": "flex",
                    "alignItems": "center",
                    "justifyContent": "space-between",
                },
            ),
            html.Div(
                id=f"{filename}-table",
                children=[
                    html.Table(
                        [
                            html.Thead(
                                html.Tr(
                                    [
                                        html.Th(
                                            "Rank",
                                            style={
                                                "backgroundColor": "#F0F0F0",
                                                "textAlign": "left",
                                            },
                                        ),
                                        html.Th(
                                            "Name",
                                            style={
                                                "backgroundColor": "#F0F0F0",
                                                "textAlign": "left",
                                            },
                                        ),
                                        html.Th(
                                            "Metadata",
                                            style={
                                                "backgroundColor": "#F0F0F0",
                                                "textAlign": "left",
                                                "marginRight": "10px",
                                            },
                                        ),
                                        html.Th(
                                            "% of Total",
                                            style={
                                                "backgroundColor": "#F0F0F0",
                                                "textAlign": "left",
                                            },
                                        ),
                                    ]
                                )
                            ),
                            html.Tbody(
                                [
                                    html.Tr(
                                        [
                                            html.Td(
                                                idx + 1, style={"textAlign": "center"}
                                            ),
                                            html.Td(
                                                row["Name"], style={"textAlign": "left"}
                                            ),
                                            html.Td(
                                                render_chips(
                                                    row["Metadata"], chip_color
                                                )
                                            ),
                                            html.Td(
                                                progress_bar(
                                                    row["% of total"], bar_color
                                                ),
                                                style={"textAlign": "center"},
                                            ),
                                        ]
                                    )
                                    for idx, row in df.iterrows()
                                ]
                            ),
                        ],
                        style={
                            "borderCollapse": "collapse",
                            "width": "100%",
                            "border": "none",
                        },
                    ),
                ],
            ),
            dcc.Loading(
                id=f"loading-{filename}-toggle",
                type="dot",
                color="#082030",
                children=html.Div(
                    [
                        html.Button(
                            "โ–ผ Show Top 50",
                            id=f"{filename}-toggle",
                            n_clicks=0,
                            style={**button_style, "border": "none"},
                        )
                    ],
                    style={"marginTop": "5px", "textAlign": "left"},
                ),
            ),
        ],
        style={"marginBottom": "20px"},
    )


# Function to get top N leaderboard
def get_top_n_leaderboard(filtered_df, group_col, top_n=10):
    top = (
        filtered_df.groupby(group_col)["downloads"]
        .sum()
        .nlargest(top_n)
        .reset_index()
        .rename(columns={group_col: "Name", "downloads": "Total Value"})
    )
    total_value = top["Total Value"].sum()
    top["% of total"] = top["Total Value"] / total_value * 100 if total_value else 0

    # Create a downloadable version of the leaderboard
    download_top = top.copy()
    download_top["Total Value"] = download_top["Total Value"].astype(int)
    download_top["% of total"] = download_top["% of total"].round(2)

    top["Name"].replace("User", "user")

    # All relevant metadata columns
    meta_cols = meta_cols_map.get(group_col, [])
    # Collect all metadata per top n for each category (country, author, model)
    meta_map = {}
    download_map = {}
    for name in top["Name"]:
        name_data = filtered_df[filtered_df[group_col] == name]
        meta_map[name] = {}
        download_map[name] = {}
        for col in meta_cols:
            if col in name_data.columns:
                unique_vals = name_data[col].unique()
                meta_map[name][col] = list(unique_vals)
                download_map[name][col] = list(unique_vals)

    # Function to build metadata chips
    def build_metadata(nm):
        meta = meta_map.get(nm, {})
        chips = []
        # Countries
        for c in meta.get("org_country_single", []):
            if c == "United States of America":
                c = "USA"
            if c == "user":
                c = "User"
            chips.append((country_icon_map.get(c, ""), c))
        # Author
        for a in meta.get("author", []):
            icon = company_icon_map.get(a, "")
            if icon == "":
                if meta.get("merged_country_groups_single", ["User"])[0] != "User":
                    icon = "๐Ÿข"
                else:
                    icon = "๐Ÿ‘ค"
            chips.append((icon, a))
        # Downloads
        # Sum downloads if multiple entries
        total_downloads = sum(
            d for d in meta.get("downloads", []) if pd.notna(d)
        )  # Check if d is not NaN
        if total_downloads:
            chips.append(("โฌ‡๏ธ", f"{int(total_downloads):,}"))

        # Modality
        for m in meta.get("merged_modality", []):
            chips.append(("", m))

        # Estimated Parameters
        for p in meta.get("estimated_parameters", []):
            if pd.notna(p):  # Check if p is not NaN
                if p >= 1e9:
                    p_str = f"{p / 1e9:.1f}B"
                elif p >= 1e6:
                    p_str = f"{p / 1e6:.1f}M"
                elif p >= 1e3:
                    p_str = f"{p / 1e3:.1f}K"
                else:
                    p_str = str(p)
                chips.append(("โš™๏ธ", p_str))
        return chips

    # Function to create downloadable dataframe
    def build_download_metadata(nm):
        meta = download_map.get(nm, {})
        download_info = {}
        for col in meta_cols:
            # don't add empty columns
            if col not in meta or not meta[col]:
                continue
            vals = meta.get(col, [])
            if vals:
                # Join list into a single string for CSV
                download_info[col] = ", ".join(str(v) for v in vals)
            else:
                download_info[col] = ""
        return download_info

    # Apply metadata builder to top dataframe
    top["Metadata"] = top["Name"].astype(object).apply(build_metadata)
    download_info_list = [build_download_metadata(nm) for nm in download_top["Name"]]
    download_info_df = pd.DataFrame(download_info_list)
    download_top = pd.concat([download_top, download_info_df], axis=1)

    return top[["Name", "Metadata", "% of total"]], download_top


def create_leaderboard(filtered_df, board_type, top_n=10):
    if filtered_df.empty:
        return html.Div("No data in selected range")

    # Merge HF and USA
    filtered_df["org_country_single"] = filtered_df["org_country_single"].replace(
        {"HF": "United States of America"}
    )
    # Merge International and Online
    filtered_df["org_country_single"] = filtered_df["org_country_single"].replace(
        {"International": "International/Online", "Online": "International/Online"}
    )

    # Build leaderboards
    top_countries, download_top_countries = get_top_n_leaderboard(
        filtered_df, "org_country_single", top_n
    )
    top_developers, download_top_developers = get_top_n_leaderboard(
        filtered_df, "author", top_n
    )
    top_models, download_top_models = get_top_n_leaderboard(filtered_df, "model", top_n)

    if board_type == "countries":
        return render_table(
            top_countries,
            download_top_countries,
            "Top Countries",
            chip_color="#F0F9FF",
            bar_color="#082030",
            filename="top_countries",
        )
    elif board_type == "developers":
        return render_table(
            top_developers,
            download_top_developers,
            "Top Developers",
            chip_color="#F0F9FF",
            bar_color="#082030",
            filename="top_developers",
        )
    else:
        return render_table(
            top_models,
            download_top_models,
            "Top Models",
            chip_color="#F0F9FF",
            bar_color="#082030",
            filename="top_models",
        )