File size: 10,426 Bytes
fd38574
7007406
fd38574
 
7007406
fe161c7
fd38574
 
 
de24f31
fd38574
8206722
 
 
 
 
 
 
 
 
 
7007406
 
 
fd38574
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe161c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8206722
 
 
 
7007406
 
 
 
8206722
 
 
 
 
 
 
 
fd38574
 
 
 
fe161c7
 
8206722
 
 
fd38574
 
 
 
77e9502
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8206722
77e9502
 
 
 
 
 
 
 
 
 
fd38574
77e9502
fd38574
 
77e9502
 
 
 
 
 
 
 
 
 
 
 
fd38574
 
 
 
 
 
 
 
 
 
fe161c7
 
 
 
8206722
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77e9502
7007406
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8206722
 
77e9502
8206722
 
 
 
 
 
 
 
 
 
 
 
 
fd38574
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
# Import packages
from dash import Dash, html, dcc, Input, Output
import pandas as pd
import plotly.express as px
from graphs.model_market_share import create_plotly_stacked_area_chart, create_plotly_world_map, create_plotly_range_slider, create_leaderboard
from graphs.model_characteristics import create_plotly_language_concentration_chart, create_plotly_publication_curves_with_legend

# Initialize the app
app = Dash()
server = app.server

# Load pre-processed data frames
model_topk_df = pd.read_pickle("data_frames/model_topk_df.pkl")
model_gini_df = pd.read_pickle("data_frames/model_gini_df.pkl")
model_hhi_df = pd.read_pickle("data_frames/model_hhi_df.pkl")
language_concentration_df = pd.read_pickle("data_frames/language_concentration_df.pkl")
license_concentration_df = pd.read_pickle("data_frames/download_license_cumsum_df.pkl")
download_method_cumsum_df = pd.read_pickle("data_frames/download_method_cumsum_df.pkl")
download_arch_cumsum_df = pd.read_pickle("data_frames/download_arch_cumsum_df.pkl")
nat_topk_df = pd.read_pickle("data_frames/nat_topk_df.pkl")
country_concentration_df = pd.read_pickle("data_frames/country_concentration_df.pkl")
author_concentration_df = pd.read_pickle("data_frames/author_concentration_df.pkl")
model_concentration_df = pd.read_pickle("data_frames/model_concentration_df.pkl")


TEMP_MODEL_EVENTS = {
    # "Yolo World Mirror": "2024-03-01",
    "Llama 3": "2024-04-17",
    "Stable Cascade": "2024-02-02",
    "Stable Diffusion 3": "2024-05-30",
    # "embed/upscale": "2023-03-24",
    "DeepSeek-R1": "2025-01-20",
    "Gemma-3 12B QAT": "2025-04-15", # gemma-3-12b-it-qat-4bit
    # "Qwen": "2025-03-05",
    # "Flux RedFlux": "2025-04-12",
    # "DeepSeek-V3": "2025-03-24",
    # "bloom": "2022-05-19",
    "DALLE2-PyTorch": "2022-06-25",
    "Stable Diffusion": "2022-08-10",
    "CLIP ViT": "2021-01-05",
    "YOLOv8": "2023-04-26",
    "Sentence Transformer MiniLM v2": "2021-08-30",
}

PALETTE_0 = [
    "#335C67",
    "#FFF3B0",
    "#E09F3E",
    "#9E2A2B",
    "#540B0E"
]

fig = create_plotly_stacked_area_chart(
    model_topk_df, model_gini_df, model_hhi_df, TEMP_MODEL_EVENTS, PALETTE_0
)

LANG_SEGMENT_ORDER = [
    'Monolingual: EN', 'Monolingual: HR', 'Monolingual: M/LR', 
    'Multilingual: HR', 'Multilingual', 'Unknown',
]
fig2 = create_plotly_language_concentration_chart(
    language_concentration_df, 'time', 'metric', 'value', LANG_SEGMENT_ORDER, PALETTE_0
)

LICENSE_SEGMENT_ORDER = [
    "Open Use", "Open Use (Acceptable Use Policy)", "Open Use (Non-Commercial Only)", "Attribution", 
    "Acceptable Use Policy", "Non-Commercial Only", "Undocumented", "Undocumented (Acceptable Use Policy)",
]
fig3 = create_plotly_language_concentration_chart(
    license_concentration_df, 'period', 'status', 'percent', LICENSE_SEGMENT_ORDER, PALETTE_0
)

METHOD_PLOT_CHOICES = {
    "cumulative": "none", # none, mean, sum
    "y_col": "percent", # percent count
    "y_log": False, # True, False
    "period": "W",
}
fig4 = create_plotly_publication_curves_with_legend(
    download_method_cumsum_df, METHOD_PLOT_CHOICES, PALETTE_0
)

ARCHITECTURE_PLOT_CHOICES = {
    "cumulative": "none", # none, mean, sum
    "y_col": "percent", # percent count
    "y_log": False, # True, False
    "period": "W",
}
fig5 = create_plotly_publication_curves_with_legend(
    download_arch_cumsum_df, ARCHITECTURE_PLOT_CHOICES, PALETTE_0
)

fig6 = create_plotly_world_map(
    country_concentration_df, "time", "metric", "value"
)

fig7 = create_leaderboard(
    country_concentration_df, author_concentration_df, model_concentration_df
)

slider = create_plotly_range_slider(
    model_topk_df
)

slider2 = create_plotly_range_slider(
    country_concentration_df
)

# Make global font family
fig.update_layout(font_family="Inter")
fig2.update_layout(font_family="Inter")
fig3.update_layout(font_family="Inter")
fig4.update_layout(font_family="Inter")
fig5.update_layout(font_family="Inter")
fig6.update_layout(font_family="Inter")
slider.update_layout(font_family="Inter")
slider2.update_layout(font_family="Inter")

# App layout
app.layout = html.Div(
    [
        html.Div(
            [
                html.Div(children='Visualizing the Open Model Ecosystem', style={'fontSize': 28, 'fontWeight': 'bold', 'marginBottom': 6}),
                html.Div(children='An interactive dashboard to explore trends in open models on Hugging Face', style={'fontSize': 16, 'marginBottom': 12}),
                html.Hr(style={'marginTop': 8, 'marginBottom': 8}),
            ],
            style={'textAlign': 'center'}
        ),
        html.Div(
            [
                dcc.Tabs([
                    dcc.Tab(label='Model Market Share', children=[
                        html.Div([
                            html.Div(children='Select time range to update all graphs below:', style={'fontSize': 16, 'marginBottom': 6, 'marginTop': 10}),
                            dcc.Graph(figure=slider2, id='time-slider', style={'height': '100px'}),
                            html.Div(
                                id='output-container-range-slider',
                                style={
                                    'textAlign': 'center',
                                    'fontSize': 20,
                                    'marginBottom': 15,
                                    'marginTop': 30,
                                    'backgroundColor': 'white',
                                    'borderRadius': '12px',
                                    'boxShadow': '0 2px 12px rgba(0,0,0,0.10)',
                                    'padding': '18px',
                                    'display': 'inline-block',
                                }
                            ),
                        ], style={'marginBottom': 12, 'justifyContent': 'center', 'textAlign': 'center'}),
                        html.Div([
                            dcc.Graph(id='stacked-area-chart'),
                        ], style={'marginBottom': 12}),
                        html.Div([
                            html.Div(
                                dcc.Graph(id='world-map-with-slider'),
                                style={'display': 'flex', 'justifyContent': 'center'}
                            ),
                            dcc.Graph(id='leaderboard'),
                        ], style={'marginBottom': 12})
                    ]),
                    dcc.Tab(label='Model Characteristics', children=[
                        dcc.Graph(id='language-concentration-chart'),
                        html.Div([
                            dcc.Dropdown(['Language Concentration', 'Architecture', 'License', 'Method'], 'Language Concentration', id='dropdown'),
                        ], style={'marginTop': 6}),
                    ]),
                ])
            ],
            style={
                'backgroundColor': 'white',
                'borderRadius': '18px',
                'boxShadow': '0 4px 24px rgba(0,0,0,0.10)',
                'padding': '32px',
                'margin': '32px auto',
                'maxWidth': '1250px',
            }
        )
    ],
    style={'fontFamily': 'Inter', 'backgroundColor': '#f7f7fa', 'minHeight': '100vh'}
)

@app.callback(
    Output('output-container-range-slider', 'children'),
    [Input('time-slider', 'relayoutData')]
)
def update_output(relayout_data):
    if relayout_data and 'xaxis.range[0]' in relayout_data and 'xaxis.range[1]' in relayout_data:
        start_time = pd.to_datetime(relayout_data['xaxis.range[0]']).strftime('%Y-%m-%d')
        end_time = pd.to_datetime(relayout_data['xaxis.range[1]']).strftime('%Y-%m-%d')
        return f'Selected time range: {start_time} to {end_time}'
    else:
        return 'Selected time range: All data'
    
# On dropdown change, update graph
@app.callback(
    Output('language-concentration-chart', 'figure'),
    [Input('dropdown', 'value')]
)
def update_graph(selected_metric):
    if selected_metric == 'Language Concentration':
        return fig2
    elif selected_metric == 'License':
        return fig3
    elif selected_metric == 'Method':
        return fig4
    elif selected_metric == 'Architecture':
        return fig5
    
@app.callback(
    Output('world-map-with-slider', 'figure'),
    [Input('time-slider', 'relayoutData')]
)
def update_map(relayout_data):
    if relayout_data and 'xaxis.range[0]' in relayout_data and 'xaxis.range[1]' in relayout_data:
        start_time = pd.to_datetime(relayout_data['xaxis.range[0]']).strftime('%Y-%m-%d')
        end_time = pd.to_datetime(relayout_data['xaxis.range[1]']).strftime('%Y-%m-%d')
        updated_fig = create_plotly_world_map(
            country_concentration_df, "time", "metric", "value", start_time=start_time, end_time=end_time
        )
        updated_fig.update_layout(font_family="Inter")
        return updated_fig
    else:
        return fig6

@app.callback(
    Output('leaderboard', 'figure'),
    [Input('time-slider', 'relayoutData')]
)
def update_leaderboard(relayout_data):
    if relayout_data and 'xaxis.range[0]' in relayout_data and 'xaxis.range[1]' in relayout_data:
        start_time = pd.to_datetime(relayout_data['xaxis.range[0]']).strftime('%Y-%m-%d')
        end_time = pd.to_datetime(relayout_data['xaxis.range[1]']).strftime('%Y-%m-%d')
        updated_fig = create_leaderboard(
            country_concentration_df, author_concentration_df, model_concentration_df, start_time=start_time, end_time=end_time
        )
        updated_fig.update_layout(font_family="Inter")
        return updated_fig
    else:
        return fig7
    
@app.callback(
    Output('stacked-area-chart', 'figure'),
    [Input('time-slider', 'relayoutData')]
)
def update_stacked_area(relayout_data):
    if relayout_data and 'xaxis.range[0]' in relayout_data and 'xaxis.range[1]' in relayout_data:
        start_time = pd.to_datetime(relayout_data['xaxis.range[0]']).strftime('%Y-%m-%d')
        end_time = pd.to_datetime(relayout_data['xaxis.range[1]']).strftime('%Y-%m-%d')
        updated_fig = create_plotly_stacked_area_chart(
            model_topk_df, model_gini_df, model_hhi_df, TEMP_MODEL_EVENTS, PALETTE_0,
            start_time=start_time, end_time=end_time
        )
        updated_fig.update_layout(font_family="Inter")
        return updated_fig
    else:
        return fig

# Run the app
if __name__ == '__main__':
    app.run(debug=True)