File size: 10,426 Bytes
fd38574 7007406 fd38574 7007406 fe161c7 fd38574 de24f31 fd38574 8206722 7007406 fd38574 fe161c7 8206722 7007406 8206722 fd38574 fe161c7 8206722 fd38574 77e9502 8206722 77e9502 fd38574 77e9502 fd38574 77e9502 fd38574 fe161c7 8206722 77e9502 7007406 8206722 77e9502 8206722 fd38574 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 |
# Import packages
from dash import Dash, html, dcc, Input, Output
import pandas as pd
import plotly.express as px
from graphs.model_market_share import create_plotly_stacked_area_chart, create_plotly_world_map, create_plotly_range_slider, create_leaderboard
from graphs.model_characteristics import create_plotly_language_concentration_chart, create_plotly_publication_curves_with_legend
# Initialize the app
app = Dash()
server = app.server
# Load pre-processed data frames
model_topk_df = pd.read_pickle("data_frames/model_topk_df.pkl")
model_gini_df = pd.read_pickle("data_frames/model_gini_df.pkl")
model_hhi_df = pd.read_pickle("data_frames/model_hhi_df.pkl")
language_concentration_df = pd.read_pickle("data_frames/language_concentration_df.pkl")
license_concentration_df = pd.read_pickle("data_frames/download_license_cumsum_df.pkl")
download_method_cumsum_df = pd.read_pickle("data_frames/download_method_cumsum_df.pkl")
download_arch_cumsum_df = pd.read_pickle("data_frames/download_arch_cumsum_df.pkl")
nat_topk_df = pd.read_pickle("data_frames/nat_topk_df.pkl")
country_concentration_df = pd.read_pickle("data_frames/country_concentration_df.pkl")
author_concentration_df = pd.read_pickle("data_frames/author_concentration_df.pkl")
model_concentration_df = pd.read_pickle("data_frames/model_concentration_df.pkl")
TEMP_MODEL_EVENTS = {
# "Yolo World Mirror": "2024-03-01",
"Llama 3": "2024-04-17",
"Stable Cascade": "2024-02-02",
"Stable Diffusion 3": "2024-05-30",
# "embed/upscale": "2023-03-24",
"DeepSeek-R1": "2025-01-20",
"Gemma-3 12B QAT": "2025-04-15", # gemma-3-12b-it-qat-4bit
# "Qwen": "2025-03-05",
# "Flux RedFlux": "2025-04-12",
# "DeepSeek-V3": "2025-03-24",
# "bloom": "2022-05-19",
"DALLE2-PyTorch": "2022-06-25",
"Stable Diffusion": "2022-08-10",
"CLIP ViT": "2021-01-05",
"YOLOv8": "2023-04-26",
"Sentence Transformer MiniLM v2": "2021-08-30",
}
PALETTE_0 = [
"#335C67",
"#FFF3B0",
"#E09F3E",
"#9E2A2B",
"#540B0E"
]
fig = create_plotly_stacked_area_chart(
model_topk_df, model_gini_df, model_hhi_df, TEMP_MODEL_EVENTS, PALETTE_0
)
LANG_SEGMENT_ORDER = [
'Monolingual: EN', 'Monolingual: HR', 'Monolingual: M/LR',
'Multilingual: HR', 'Multilingual', 'Unknown',
]
fig2 = create_plotly_language_concentration_chart(
language_concentration_df, 'time', 'metric', 'value', LANG_SEGMENT_ORDER, PALETTE_0
)
LICENSE_SEGMENT_ORDER = [
"Open Use", "Open Use (Acceptable Use Policy)", "Open Use (Non-Commercial Only)", "Attribution",
"Acceptable Use Policy", "Non-Commercial Only", "Undocumented", "Undocumented (Acceptable Use Policy)",
]
fig3 = create_plotly_language_concentration_chart(
license_concentration_df, 'period', 'status', 'percent', LICENSE_SEGMENT_ORDER, PALETTE_0
)
METHOD_PLOT_CHOICES = {
"cumulative": "none", # none, mean, sum
"y_col": "percent", # percent count
"y_log": False, # True, False
"period": "W",
}
fig4 = create_plotly_publication_curves_with_legend(
download_method_cumsum_df, METHOD_PLOT_CHOICES, PALETTE_0
)
ARCHITECTURE_PLOT_CHOICES = {
"cumulative": "none", # none, mean, sum
"y_col": "percent", # percent count
"y_log": False, # True, False
"period": "W",
}
fig5 = create_plotly_publication_curves_with_legend(
download_arch_cumsum_df, ARCHITECTURE_PLOT_CHOICES, PALETTE_0
)
fig6 = create_plotly_world_map(
country_concentration_df, "time", "metric", "value"
)
fig7 = create_leaderboard(
country_concentration_df, author_concentration_df, model_concentration_df
)
slider = create_plotly_range_slider(
model_topk_df
)
slider2 = create_plotly_range_slider(
country_concentration_df
)
# Make global font family
fig.update_layout(font_family="Inter")
fig2.update_layout(font_family="Inter")
fig3.update_layout(font_family="Inter")
fig4.update_layout(font_family="Inter")
fig5.update_layout(font_family="Inter")
fig6.update_layout(font_family="Inter")
slider.update_layout(font_family="Inter")
slider2.update_layout(font_family="Inter")
# App layout
app.layout = html.Div(
[
html.Div(
[
html.Div(children='Visualizing the Open Model Ecosystem', style={'fontSize': 28, 'fontWeight': 'bold', 'marginBottom': 6}),
html.Div(children='An interactive dashboard to explore trends in open models on Hugging Face', style={'fontSize': 16, 'marginBottom': 12}),
html.Hr(style={'marginTop': 8, 'marginBottom': 8}),
],
style={'textAlign': 'center'}
),
html.Div(
[
dcc.Tabs([
dcc.Tab(label='Model Market Share', children=[
html.Div([
html.Div(children='Select time range to update all graphs below:', style={'fontSize': 16, 'marginBottom': 6, 'marginTop': 10}),
dcc.Graph(figure=slider2, id='time-slider', style={'height': '100px'}),
html.Div(
id='output-container-range-slider',
style={
'textAlign': 'center',
'fontSize': 20,
'marginBottom': 15,
'marginTop': 30,
'backgroundColor': 'white',
'borderRadius': '12px',
'boxShadow': '0 2px 12px rgba(0,0,0,0.10)',
'padding': '18px',
'display': 'inline-block',
}
),
], style={'marginBottom': 12, 'justifyContent': 'center', 'textAlign': 'center'}),
html.Div([
dcc.Graph(id='stacked-area-chart'),
], style={'marginBottom': 12}),
html.Div([
html.Div(
dcc.Graph(id='world-map-with-slider'),
style={'display': 'flex', 'justifyContent': 'center'}
),
dcc.Graph(id='leaderboard'),
], style={'marginBottom': 12})
]),
dcc.Tab(label='Model Characteristics', children=[
dcc.Graph(id='language-concentration-chart'),
html.Div([
dcc.Dropdown(['Language Concentration', 'Architecture', 'License', 'Method'], 'Language Concentration', id='dropdown'),
], style={'marginTop': 6}),
]),
])
],
style={
'backgroundColor': 'white',
'borderRadius': '18px',
'boxShadow': '0 4px 24px rgba(0,0,0,0.10)',
'padding': '32px',
'margin': '32px auto',
'maxWidth': '1250px',
}
)
],
style={'fontFamily': 'Inter', 'backgroundColor': '#f7f7fa', 'minHeight': '100vh'}
)
@app.callback(
Output('output-container-range-slider', 'children'),
[Input('time-slider', 'relayoutData')]
)
def update_output(relayout_data):
if relayout_data and 'xaxis.range[0]' in relayout_data and 'xaxis.range[1]' in relayout_data:
start_time = pd.to_datetime(relayout_data['xaxis.range[0]']).strftime('%Y-%m-%d')
end_time = pd.to_datetime(relayout_data['xaxis.range[1]']).strftime('%Y-%m-%d')
return f'Selected time range: {start_time} to {end_time}'
else:
return 'Selected time range: All data'
# On dropdown change, update graph
@app.callback(
Output('language-concentration-chart', 'figure'),
[Input('dropdown', 'value')]
)
def update_graph(selected_metric):
if selected_metric == 'Language Concentration':
return fig2
elif selected_metric == 'License':
return fig3
elif selected_metric == 'Method':
return fig4
elif selected_metric == 'Architecture':
return fig5
@app.callback(
Output('world-map-with-slider', 'figure'),
[Input('time-slider', 'relayoutData')]
)
def update_map(relayout_data):
if relayout_data and 'xaxis.range[0]' in relayout_data and 'xaxis.range[1]' in relayout_data:
start_time = pd.to_datetime(relayout_data['xaxis.range[0]']).strftime('%Y-%m-%d')
end_time = pd.to_datetime(relayout_data['xaxis.range[1]']).strftime('%Y-%m-%d')
updated_fig = create_plotly_world_map(
country_concentration_df, "time", "metric", "value", start_time=start_time, end_time=end_time
)
updated_fig.update_layout(font_family="Inter")
return updated_fig
else:
return fig6
@app.callback(
Output('leaderboard', 'figure'),
[Input('time-slider', 'relayoutData')]
)
def update_leaderboard(relayout_data):
if relayout_data and 'xaxis.range[0]' in relayout_data and 'xaxis.range[1]' in relayout_data:
start_time = pd.to_datetime(relayout_data['xaxis.range[0]']).strftime('%Y-%m-%d')
end_time = pd.to_datetime(relayout_data['xaxis.range[1]']).strftime('%Y-%m-%d')
updated_fig = create_leaderboard(
country_concentration_df, author_concentration_df, model_concentration_df, start_time=start_time, end_time=end_time
)
updated_fig.update_layout(font_family="Inter")
return updated_fig
else:
return fig7
@app.callback(
Output('stacked-area-chart', 'figure'),
[Input('time-slider', 'relayoutData')]
)
def update_stacked_area(relayout_data):
if relayout_data and 'xaxis.range[0]' in relayout_data and 'xaxis.range[1]' in relayout_data:
start_time = pd.to_datetime(relayout_data['xaxis.range[0]']).strftime('%Y-%m-%d')
end_time = pd.to_datetime(relayout_data['xaxis.range[1]']).strftime('%Y-%m-%d')
updated_fig = create_plotly_stacked_area_chart(
model_topk_df, model_gini_df, model_hhi_df, TEMP_MODEL_EVENTS, PALETTE_0,
start_time=start_time, end_time=end_time
)
updated_fig.update_layout(font_family="Inter")
return updated_fig
else:
return fig
# Run the app
if __name__ == '__main__':
app.run(debug=True)
|