Enoch Jason J
Modified app.py
caaf797
import torch
import re
import os
from unsloth import FastLanguageModel
from transformers import AutoTokenizer, AutoModelForCausalLM
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
# --- Model Paths (These are identifiers for the cached models) ---
LORA_ADAPTER_PATH = "enoch10jason/gemma-grammar-lora"
GENDER_MODEL_PATH = "google/gemma-3-270m-qat-q4_0-unquantized"
# --- Global variables for models ---
grammar_model = None
grammar_tokenizer = None
gender_model = None
gender_tokenizer = None
device = "cpu"
print("--- Starting Model Loading From Cache ---")
try:
# 1. Load your fine-tuned model using Unsloth
# This correctly loads the model and applies the adapter.
print(f"Loading grammar model and adapter: {LORA_ADAPTER_PATH}")
grammar_model, grammar_tokenizer = FastLanguageModel.from_pretrained(
model_name=LORA_ADAPTER_PATH,
dtype=torch.float32,
load_in_4bit=False, # CPU mode
)
print("βœ… Your fine-tuned grammar model is ready!")
# 2. Load the gender verifier model
print(f"Loading gender model: {GENDER_MODEL_PATH}")
gender_tokenizer = AutoTokenizer.from_pretrained(GENDER_MODEL_PATH)
gender_model = AutoModelForCausalLM.from_pretrained(GENDER_MODEL_PATH).to(device)
print("βœ… Gender verifier model loaded successfully!")
except Exception as e:
print(f"❌ Critical error during model loading: {e}")
grammar_model = None
gender_model = None
print("--- Model Loading Complete ---")
# --- FastAPI Application Setup ---
app = FastAPI(title="Text Correction API")
class CorrectionRequest(BaseModel):
text: str
class CorrectionResponse(BaseModel):
original_text: str
corrected_text: str
# --- API Endpoints ---
@app.post("/correct_grammar", response_model=CorrectionResponse)
async def handle_grammar_correction(request: CorrectionRequest):
if not grammar_model:
raise HTTPException(status_code=503, detail="Grammar model is not available.")
prompt_text = request.text
input_text = f"Prompt: {prompt_text}\nResponse:"
inputs = grammar_tokenizer(input_text, return_tensors="pt").to(device)
output_ids = grammar_model.generate(**inputs, max_new_tokens=256, do_sample=False)
output_text = grammar_tokenizer.decode(output_ids[0], skip_special_tokens=True)
corrected = output_text.split("Response:")[-1].strip()
return CorrectionResponse(original_text=prompt_text, corrected_text=corrected)
@app.post("/correct_gender", response_model=CorrectionResponse)
async def handle_gender_correction(request: CorrectionRequest):
if not gender_model:
raise HTTPException(status_code=503, detail="Gender model is not available.")
prompt_text = request.text
input_text = f"Prompt: Please rewrite the sentence with correct grammar and gender. Output ONLY the corrected sentence:\n{prompt_text}\nResponse:"
inputs = gender_tokenizer(input_text, return_tensors="pt").to(device)
output_ids = gender_model.generate(**inputs, max_new_tokens=256, do_sample=False)
output_text = gender_tokenizer.decode(output_ids[0], skip_special_tokens=True)
cleaned_from_model = output_text.split("Response:")[-1].strip().strip('"')
# Regex safety net
corrections = {
r'\bher wife\b': 'her husband', r'\bhis husband\b': 'his wife',
r'\bhe is a girl\b': 'he is a boy', r'\bshe is a boy\b': 'she is a girl'
}
for pattern, replacement in corrections.items():
cleaned_from_model = re.sub(pattern, replacement, cleaned_from_model, flags=re.IGNORECASE)
return CorrectionResponse(original_text=prompt_text, corrected_text=cleaned_from_model)
@app.get("/")
def read_root():
return {"status": "Text Correction API is running."}