Spaces:
Build error
Build error
| import torch | |
| import re | |
| import os | |
| from unsloth import FastLanguageModel | |
| from transformers import AutoTokenizer, AutoModelForCausalLM | |
| from fastapi import FastAPI, HTTPException | |
| from pydantic import BaseModel | |
| # --- Model Paths (These are identifiers for the cached models) --- | |
| LORA_ADAPTER_PATH = "enoch10jason/gemma-grammar-lora" | |
| GENDER_MODEL_PATH = "google/gemma-3-270m-qat-q4_0-unquantized" | |
| # --- Global variables for models --- | |
| grammar_model = None | |
| grammar_tokenizer = None | |
| gender_model = None | |
| gender_tokenizer = None | |
| device = "cpu" | |
| print("--- Starting Model Loading From Cache ---") | |
| try: | |
| # 1. Load your fine-tuned model using Unsloth | |
| # This correctly loads the model and applies the adapter. | |
| print(f"Loading grammar model and adapter: {LORA_ADAPTER_PATH}") | |
| grammar_model, grammar_tokenizer = FastLanguageModel.from_pretrained( | |
| model_name=LORA_ADAPTER_PATH, | |
| dtype=torch.float32, | |
| load_in_4bit=False, # CPU mode | |
| ) | |
| print("β Your fine-tuned grammar model is ready!") | |
| # 2. Load the gender verifier model | |
| print(f"Loading gender model: {GENDER_MODEL_PATH}") | |
| gender_tokenizer = AutoTokenizer.from_pretrained(GENDER_MODEL_PATH) | |
| gender_model = AutoModelForCausalLM.from_pretrained(GENDER_MODEL_PATH).to(device) | |
| print("β Gender verifier model loaded successfully!") | |
| except Exception as e: | |
| print(f"β Critical error during model loading: {e}") | |
| grammar_model = None | |
| gender_model = None | |
| print("--- Model Loading Complete ---") | |
| # --- FastAPI Application Setup --- | |
| app = FastAPI(title="Text Correction API") | |
| class CorrectionRequest(BaseModel): | |
| text: str | |
| class CorrectionResponse(BaseModel): | |
| original_text: str | |
| corrected_text: str | |
| # --- API Endpoints --- | |
| async def handle_grammar_correction(request: CorrectionRequest): | |
| if not grammar_model: | |
| raise HTTPException(status_code=503, detail="Grammar model is not available.") | |
| prompt_text = request.text | |
| input_text = f"Prompt: {prompt_text}\nResponse:" | |
| inputs = grammar_tokenizer(input_text, return_tensors="pt").to(device) | |
| output_ids = grammar_model.generate(**inputs, max_new_tokens=256, do_sample=False) | |
| output_text = grammar_tokenizer.decode(output_ids[0], skip_special_tokens=True) | |
| corrected = output_text.split("Response:")[-1].strip() | |
| return CorrectionResponse(original_text=prompt_text, corrected_text=corrected) | |
| async def handle_gender_correction(request: CorrectionRequest): | |
| if not gender_model: | |
| raise HTTPException(status_code=503, detail="Gender model is not available.") | |
| prompt_text = request.text | |
| input_text = f"Prompt: Please rewrite the sentence with correct grammar and gender. Output ONLY the corrected sentence:\n{prompt_text}\nResponse:" | |
| inputs = gender_tokenizer(input_text, return_tensors="pt").to(device) | |
| output_ids = gender_model.generate(**inputs, max_new_tokens=256, do_sample=False) | |
| output_text = gender_tokenizer.decode(output_ids[0], skip_special_tokens=True) | |
| cleaned_from_model = output_text.split("Response:")[-1].strip().strip('"') | |
| # Regex safety net | |
| corrections = { | |
| r'\bher wife\b': 'her husband', r'\bhis husband\b': 'his wife', | |
| r'\bhe is a girl\b': 'he is a boy', r'\bshe is a boy\b': 'she is a girl' | |
| } | |
| for pattern, replacement in corrections.items(): | |
| cleaned_from_model = re.sub(pattern, replacement, cleaned_from_model, flags=re.IGNORECASE) | |
| return CorrectionResponse(original_text=prompt_text, corrected_text=cleaned_from_model) | |
| def read_root(): | |
| return {"status": "Text Correction API is running."} | |