Spaces:
Runtime error
Runtime error
MiniMind Max2 API - Gradio Interface
Browse files- README.md +59 -6
- app.py +203 -0
- model_files/configs/__init__.py +15 -0
- model_files/configs/model_config.py +154 -0
- model_files/model/__init__.py +52 -0
- model_files/model/components.py +274 -0
- model_files/model/mind2_model.py +185 -0
- requirements.txt +2 -0
README.md
CHANGED
|
@@ -1,12 +1,65 @@
|
|
| 1 |
---
|
| 2 |
-
title: MiniMind API
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo:
|
| 6 |
sdk: gradio
|
| 7 |
-
sdk_version:
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
---
|
| 11 |
|
| 12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
title: MiniMind Max2 API
|
| 3 |
+
emoji: 🧠
|
| 4 |
+
colorFrom: blue
|
| 5 |
+
colorTo: purple
|
| 6 |
sdk: gradio
|
| 7 |
+
sdk_version: 4.44.0
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
+
license: apache-2.0
|
| 11 |
+
tags:
|
| 12 |
+
- text-generation
|
| 13 |
+
- moe
|
| 14 |
+
- fastapi
|
| 15 |
+
- language-model
|
| 16 |
---
|
| 17 |
|
| 18 |
+
# 🧠 MiniMind Max2 API
|
| 19 |
+
|
| 20 |
+
**Tiny Model, Powerful Experience** - An efficient language model API with FastAPI backend.
|
| 21 |
+
|
| 22 |
+
## Features
|
| 23 |
+
|
| 24 |
+
- **Mixture of Experts (MoE)**: Only 25% of parameters activated per token
|
| 25 |
+
- **Grouped Query Attention**: 4:1 ratio for memory efficiency
|
| 26 |
+
- **FastAPI Backend**: RESTful API with automatic docs
|
| 27 |
+
- **Gradio Interface**: Interactive UI for testing
|
| 28 |
+
|
| 29 |
+
## API Endpoints
|
| 30 |
+
|
| 31 |
+
| Endpoint | Method | Description |
|
| 32 |
+
|----------|--------|-------------|
|
| 33 |
+
| `/docs` | GET | Swagger UI documentation |
|
| 34 |
+
| `/generate` | POST | Generate text from prompt |
|
| 35 |
+
| `/model-info` | GET | Get model architecture info |
|
| 36 |
+
| `/health` | GET | Health check |
|
| 37 |
+
| `/gradio` | GET | Interactive Gradio interface |
|
| 38 |
+
|
| 39 |
+
## Example Usage
|
| 40 |
+
|
| 41 |
+
```python
|
| 42 |
+
import requests
|
| 43 |
+
|
| 44 |
+
response = requests.post(
|
| 45 |
+
"https://your-space.hf.space/generate",
|
| 46 |
+
json={
|
| 47 |
+
"prompt": "Once upon a time",
|
| 48 |
+
"max_new_tokens": 100,
|
| 49 |
+
"temperature": 0.8
|
| 50 |
+
}
|
| 51 |
+
)
|
| 52 |
+
print(response.json()["generated_text"])
|
| 53 |
+
```
|
| 54 |
+
|
| 55 |
+
## Model Variants
|
| 56 |
+
|
| 57 |
+
| Model | Total Params | Active Params | Target |
|
| 58 |
+
|-------|-------------|---------------|--------|
|
| 59 |
+
| max2-nano | 500M | 125M | IoT, Mobile |
|
| 60 |
+
| max2-lite | 1.5B | 375M | Mobile, Tablet |
|
| 61 |
+
| max2-pro | 3B | 750M | Desktop |
|
| 62 |
+
|
| 63 |
+
## License
|
| 64 |
+
|
| 65 |
+
Apache 2.0
|
app.py
ADDED
|
@@ -0,0 +1,203 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
MiniMind Max2 - Gradio Space
|
| 3 |
+
A lightweight, efficient language model with MoE architecture.
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
import os
|
| 7 |
+
import sys
|
| 8 |
+
from pathlib import Path
|
| 9 |
+
|
| 10 |
+
# Add model files to path
|
| 11 |
+
sys.path.insert(0, str(Path(__file__).parent / "model_files"))
|
| 12 |
+
|
| 13 |
+
import torch
|
| 14 |
+
import gradio as gr
|
| 15 |
+
|
| 16 |
+
# Configuration
|
| 17 |
+
MODEL_NAME = os.getenv("MODEL_NAME", "max2-nano")
|
| 18 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 19 |
+
DTYPE = torch.float16 if DEVICE == "cuda" else torch.float32
|
| 20 |
+
|
| 21 |
+
# Global model
|
| 22 |
+
model = None
|
| 23 |
+
config = None
|
| 24 |
+
|
| 25 |
+
def load_model():
|
| 26 |
+
"""Load the Max2 model."""
|
| 27 |
+
global model, config
|
| 28 |
+
|
| 29 |
+
from configs.model_config import get_config, estimate_params
|
| 30 |
+
from model import Max2ForCausalLM
|
| 31 |
+
|
| 32 |
+
print(f"🔄 Loading {MODEL_NAME} on {DEVICE}...")
|
| 33 |
+
config = get_config(MODEL_NAME)
|
| 34 |
+
model = Max2ForCausalLM(config)
|
| 35 |
+
model = model.to(device=DEVICE, dtype=DTYPE)
|
| 36 |
+
model.eval()
|
| 37 |
+
|
| 38 |
+
params = estimate_params(config)
|
| 39 |
+
print(f"✅ Model loaded: {params['total_params_b']:.3f}B total, {params['active_params_b']:.3f}B active")
|
| 40 |
+
return model, config
|
| 41 |
+
|
| 42 |
+
def generate_text(prompt, max_tokens, temperature, top_k, top_p):
|
| 43 |
+
"""Generate text from prompt."""
|
| 44 |
+
global model, config
|
| 45 |
+
|
| 46 |
+
if model is None:
|
| 47 |
+
load_model()
|
| 48 |
+
|
| 49 |
+
if not prompt.strip():
|
| 50 |
+
return "Please enter a prompt."
|
| 51 |
+
|
| 52 |
+
try:
|
| 53 |
+
# Simple character-level tokenization (demo purposes)
|
| 54 |
+
# In production, use SentencePiece or similar tokenizer
|
| 55 |
+
prompt_ids = [ord(c) % config.vocab_size for c in prompt]
|
| 56 |
+
input_ids = torch.tensor([prompt_ids], device=DEVICE)
|
| 57 |
+
|
| 58 |
+
with torch.no_grad():
|
| 59 |
+
output_ids = model.generate(
|
| 60 |
+
input_ids,
|
| 61 |
+
max_new_tokens=int(max_tokens),
|
| 62 |
+
temperature=temperature,
|
| 63 |
+
top_k=int(top_k),
|
| 64 |
+
top_p=top_p,
|
| 65 |
+
do_sample=True,
|
| 66 |
+
)
|
| 67 |
+
|
| 68 |
+
# Decode generated tokens
|
| 69 |
+
generated_ids = output_ids[0, len(prompt_ids):].tolist()
|
| 70 |
+
generated_text = "".join([chr(min(max(i, 32), 126)) for i in generated_ids])
|
| 71 |
+
|
| 72 |
+
return prompt + generated_text
|
| 73 |
+
|
| 74 |
+
except Exception as e:
|
| 75 |
+
return f"Error: {str(e)}"
|
| 76 |
+
|
| 77 |
+
def get_model_info():
|
| 78 |
+
"""Get model information."""
|
| 79 |
+
global model, config
|
| 80 |
+
|
| 81 |
+
if model is None:
|
| 82 |
+
load_model()
|
| 83 |
+
|
| 84 |
+
from configs.model_config import estimate_params
|
| 85 |
+
params = estimate_params(config)
|
| 86 |
+
|
| 87 |
+
return f"""
|
| 88 |
+
## Model: {config.model_name}
|
| 89 |
+
|
| 90 |
+
| Property | Value |
|
| 91 |
+
|----------|-------|
|
| 92 |
+
| Total Parameters | {params['total_params_b']:.3f}B |
|
| 93 |
+
| Active Parameters | {params['active_params_b']:.3f}B |
|
| 94 |
+
| Activation Ratio | {params['activation_ratio']:.1%} |
|
| 95 |
+
| Device | {DEVICE} |
|
| 96 |
+
| Num Experts | {config.num_experts} |
|
| 97 |
+
| Experts per Token | {config.num_experts_per_tok} |
|
| 98 |
+
| Max Context | {config.max_position_embeddings} |
|
| 99 |
+
"""
|
| 100 |
+
|
| 101 |
+
# Create Gradio interface
|
| 102 |
+
with gr.Blocks(title="MiniMind Max2", theme=gr.themes.Soft()) as demo:
|
| 103 |
+
gr.Markdown("""
|
| 104 |
+
# 🧠 MiniMind Max2
|
| 105 |
+
|
| 106 |
+
**Tiny Model, Powerful Experience** - An efficient language model with Mixture of Experts (MoE) architecture.
|
| 107 |
+
Only 25% of parameters are activated per token for efficient inference.
|
| 108 |
+
|
| 109 |
+
> ⚠️ **Note**: This demo uses character-level tokenization for simplicity.
|
| 110 |
+
> For production use, integrate a proper tokenizer (SentencePiece, etc.).
|
| 111 |
+
""")
|
| 112 |
+
|
| 113 |
+
with gr.Tabs():
|
| 114 |
+
with gr.TabItem("🚀 Generate"):
|
| 115 |
+
with gr.Row():
|
| 116 |
+
with gr.Column(scale=2):
|
| 117 |
+
prompt_input = gr.Textbox(
|
| 118 |
+
label="Prompt",
|
| 119 |
+
placeholder="Enter your prompt here...",
|
| 120 |
+
lines=4,
|
| 121 |
+
value="Once upon a time"
|
| 122 |
+
)
|
| 123 |
+
|
| 124 |
+
with gr.Row():
|
| 125 |
+
max_tokens = gr.Slider(
|
| 126 |
+
minimum=10, maximum=256, value=100, step=10,
|
| 127 |
+
label="Max New Tokens"
|
| 128 |
+
)
|
| 129 |
+
temperature = gr.Slider(
|
| 130 |
+
minimum=0.1, maximum=2.0, value=0.8, step=0.1,
|
| 131 |
+
label="Temperature"
|
| 132 |
+
)
|
| 133 |
+
|
| 134 |
+
with gr.Row():
|
| 135 |
+
top_k = gr.Slider(
|
| 136 |
+
minimum=1, maximum=100, value=50, step=1,
|
| 137 |
+
label="Top-K"
|
| 138 |
+
)
|
| 139 |
+
top_p = gr.Slider(
|
| 140 |
+
minimum=0.1, maximum=1.0, value=0.9, step=0.05,
|
| 141 |
+
label="Top-P"
|
| 142 |
+
)
|
| 143 |
+
|
| 144 |
+
generate_btn = gr.Button("🎯 Generate", variant="primary")
|
| 145 |
+
|
| 146 |
+
with gr.Column(scale=2):
|
| 147 |
+
output_text = gr.Textbox(
|
| 148 |
+
label="Generated Text",
|
| 149 |
+
lines=12,
|
| 150 |
+
show_copy_button=True
|
| 151 |
+
)
|
| 152 |
+
|
| 153 |
+
generate_btn.click(
|
| 154 |
+
fn=generate_text,
|
| 155 |
+
inputs=[prompt_input, max_tokens, temperature, top_k, top_p],
|
| 156 |
+
outputs=output_text
|
| 157 |
+
)
|
| 158 |
+
|
| 159 |
+
gr.Examples(
|
| 160 |
+
examples=[
|
| 161 |
+
["Once upon a time", 100, 0.8, 50, 0.9],
|
| 162 |
+
["The quick brown fox", 50, 0.7, 40, 0.95],
|
| 163 |
+
["In a galaxy far away", 150, 1.0, 60, 0.85],
|
| 164 |
+
["def fibonacci(n):", 80, 0.6, 30, 0.9],
|
| 165 |
+
],
|
| 166 |
+
inputs=[prompt_input, max_tokens, temperature, top_k, top_p],
|
| 167 |
+
)
|
| 168 |
+
|
| 169 |
+
with gr.TabItem("ℹ️ Model Info"):
|
| 170 |
+
info_btn = gr.Button("📊 Load Model Info")
|
| 171 |
+
info_output = gr.Markdown()
|
| 172 |
+
info_btn.click(fn=get_model_info, outputs=info_output)
|
| 173 |
+
|
| 174 |
+
gr.Markdown("""
|
| 175 |
+
---
|
| 176 |
+
|
| 177 |
+
### 🔧 Architecture
|
| 178 |
+
- **MoE**: 8 experts, top-2 routing (25% activation)
|
| 179 |
+
- **GQA**: Grouped Query Attention (4:1 ratio)
|
| 180 |
+
- **RoPE**: Rotary Position Embeddings
|
| 181 |
+
- **SwiGLU**: Improved activation function
|
| 182 |
+
|
| 183 |
+
### 📦 Model Variants
|
| 184 |
+
| Model | Total | Active | Target |
|
| 185 |
+
|-------|-------|--------|--------|
|
| 186 |
+
| max2-nano | 500M | 125M | IoT/Mobile |
|
| 187 |
+
| max2-lite | 1.5B | 375M | Mobile/Tablet |
|
| 188 |
+
| max2-pro | 3B | 750M | Desktop |
|
| 189 |
+
|
| 190 |
+
---
|
| 191 |
+
|
| 192 |
+
**[Model Repository](https://huggingface.co/fariasultana/MiniMind)** |
|
| 193 |
+
**License**: Apache 2.0
|
| 194 |
+
""")
|
| 195 |
+
|
| 196 |
+
# Load model on startup
|
| 197 |
+
try:
|
| 198 |
+
load_model()
|
| 199 |
+
except Exception as e:
|
| 200 |
+
print(f"Model will load on first request: {e}")
|
| 201 |
+
|
| 202 |
+
if __name__ == "__main__":
|
| 203 |
+
demo.launch(server_name="0.0.0.0", server_port=7860)
|
model_files/configs/__init__.py
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""MiniMind Max2 Configuration Module"""
|
| 2 |
+
from .model_config import Max2Config, get_config, estimate_params, MAX2_CONFIGS
|
| 3 |
+
|
| 4 |
+
# Backward compatibility
|
| 5 |
+
Mind2Config = Max2Config
|
| 6 |
+
MIND2_CONFIGS = MAX2_CONFIGS
|
| 7 |
+
|
| 8 |
+
__all__ = [
|
| 9 |
+
"Max2Config",
|
| 10 |
+
"Mind2Config",
|
| 11 |
+
"get_config",
|
| 12 |
+
"estimate_params",
|
| 13 |
+
"MAX2_CONFIGS",
|
| 14 |
+
"MIND2_CONFIGS",
|
| 15 |
+
]
|
model_files/configs/model_config.py
ADDED
|
@@ -0,0 +1,154 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
MiniMind Max2 Model Configuration
|
| 3 |
+
Inspired by MiniMax M2's efficient activated parameters design
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
from dataclasses import dataclass
|
| 7 |
+
from typing import Optional, Dict, Any
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
@dataclass
|
| 11 |
+
class Max2Config:
|
| 12 |
+
"""Configuration for MiniMind Max2 models."""
|
| 13 |
+
|
| 14 |
+
# Model identification
|
| 15 |
+
model_name: str = "max2-lite"
|
| 16 |
+
model_version: str = "1.0.0"
|
| 17 |
+
|
| 18 |
+
# Architecture dimensions
|
| 19 |
+
hidden_size: int = 1536
|
| 20 |
+
intermediate_size: int = 4096
|
| 21 |
+
num_hidden_layers: int = 24
|
| 22 |
+
num_attention_heads: int = 12
|
| 23 |
+
num_key_value_heads: int = 3 # GQA ratio 4:1
|
| 24 |
+
|
| 25 |
+
# Vocabulary and embeddings
|
| 26 |
+
vocab_size: int = 32000
|
| 27 |
+
max_position_embeddings: int = 8192
|
| 28 |
+
rope_theta: float = 10000.0
|
| 29 |
+
|
| 30 |
+
# MoE (Mixture of Experts) configuration
|
| 31 |
+
use_moe: bool = True
|
| 32 |
+
num_experts: int = 8
|
| 33 |
+
num_experts_per_tok: int = 2 # Only 25% activation
|
| 34 |
+
expert_hidden_size: int = 1024
|
| 35 |
+
router_aux_loss_coef: float = 0.01
|
| 36 |
+
|
| 37 |
+
# Normalization and activation
|
| 38 |
+
rms_norm_eps: float = 1e-6
|
| 39 |
+
hidden_act: str = "silu"
|
| 40 |
+
|
| 41 |
+
# Regularization
|
| 42 |
+
hidden_dropout: float = 0.0
|
| 43 |
+
attention_dropout: float = 0.0
|
| 44 |
+
|
| 45 |
+
# Special tokens
|
| 46 |
+
pad_token_id: int = 0
|
| 47 |
+
bos_token_id: int = 1
|
| 48 |
+
eos_token_id: int = 2
|
| 49 |
+
|
| 50 |
+
# Initialization
|
| 51 |
+
initializer_range: float = 0.02
|
| 52 |
+
|
| 53 |
+
# Memory optimization
|
| 54 |
+
use_cache: bool = True
|
| 55 |
+
use_flash_attention: bool = True
|
| 56 |
+
gradient_checkpointing: bool = False
|
| 57 |
+
|
| 58 |
+
def to_dict(self) -> Dict[str, Any]:
|
| 59 |
+
return {k: v for k, v in self.__dict__.items()}
|
| 60 |
+
|
| 61 |
+
@classmethod
|
| 62 |
+
def from_dict(cls, config_dict: Dict[str, Any]) -> "Max2Config":
|
| 63 |
+
return cls(**{k: v for k, v in config_dict.items() if k in cls.__dataclass_fields__})
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
# Predefined model configurations
|
| 67 |
+
MAX2_CONFIGS = {
|
| 68 |
+
"max2-nano": Max2Config(
|
| 69 |
+
model_name="max2-nano",
|
| 70 |
+
hidden_size=768,
|
| 71 |
+
intermediate_size=2048,
|
| 72 |
+
num_hidden_layers=12,
|
| 73 |
+
num_attention_heads=12,
|
| 74 |
+
num_key_value_heads=3,
|
| 75 |
+
num_experts=4,
|
| 76 |
+
num_experts_per_tok=1,
|
| 77 |
+
expert_hidden_size=512,
|
| 78 |
+
max_position_embeddings=4096,
|
| 79 |
+
),
|
| 80 |
+
"max2-lite": Max2Config(
|
| 81 |
+
model_name="max2-lite",
|
| 82 |
+
hidden_size=1536,
|
| 83 |
+
intermediate_size=4096,
|
| 84 |
+
num_hidden_layers=24,
|
| 85 |
+
num_attention_heads=12,
|
| 86 |
+
num_key_value_heads=3,
|
| 87 |
+
num_experts=8,
|
| 88 |
+
num_experts_per_tok=2,
|
| 89 |
+
expert_hidden_size=1024,
|
| 90 |
+
max_position_embeddings=8192,
|
| 91 |
+
),
|
| 92 |
+
"max2-pro": Max2Config(
|
| 93 |
+
model_name="max2-pro",
|
| 94 |
+
hidden_size=2560,
|
| 95 |
+
intermediate_size=6912,
|
| 96 |
+
num_hidden_layers=32,
|
| 97 |
+
num_attention_heads=20,
|
| 98 |
+
num_key_value_heads=4,
|
| 99 |
+
num_experts=8,
|
| 100 |
+
num_experts_per_tok=2,
|
| 101 |
+
expert_hidden_size=1728,
|
| 102 |
+
max_position_embeddings=16384,
|
| 103 |
+
),
|
| 104 |
+
}
|
| 105 |
+
|
| 106 |
+
# Aliases for backward compatibility
|
| 107 |
+
Mind2Config = Max2Config
|
| 108 |
+
MIND2_CONFIGS = MAX2_CONFIGS
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
def get_config(model_name: str) -> Max2Config:
|
| 112 |
+
"""Get predefined configuration by name."""
|
| 113 |
+
if model_name not in MAX2_CONFIGS:
|
| 114 |
+
raise ValueError(f"Unknown model: {model_name}. Available: {list(MAX2_CONFIGS.keys())}")
|
| 115 |
+
return MAX2_CONFIGS[model_name]
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
def estimate_params(config: Max2Config) -> dict:
|
| 119 |
+
"""Estimate parameter counts for a configuration."""
|
| 120 |
+
embed_params = config.vocab_size * config.hidden_size
|
| 121 |
+
head_dim = config.hidden_size // config.num_attention_heads
|
| 122 |
+
|
| 123 |
+
# Attention parameters per layer (GQA)
|
| 124 |
+
q_params = config.hidden_size * config.hidden_size
|
| 125 |
+
kv_params = 2 * config.hidden_size * (config.num_key_value_heads * head_dim)
|
| 126 |
+
o_params = config.hidden_size * config.hidden_size
|
| 127 |
+
attn_params_per_layer = q_params + kv_params + o_params
|
| 128 |
+
|
| 129 |
+
# MoE FFN parameters per layer
|
| 130 |
+
if config.use_moe:
|
| 131 |
+
router_params = config.hidden_size * config.num_experts
|
| 132 |
+
expert_params = 3 * config.hidden_size * config.expert_hidden_size
|
| 133 |
+
ffn_params_per_layer = router_params + (config.num_experts * expert_params)
|
| 134 |
+
active_ffn_params = router_params + (config.num_experts_per_tok * expert_params)
|
| 135 |
+
else:
|
| 136 |
+
ffn_params_per_layer = 3 * config.hidden_size * config.intermediate_size
|
| 137 |
+
active_ffn_params = ffn_params_per_layer
|
| 138 |
+
|
| 139 |
+
norm_params_per_layer = 2 * config.hidden_size
|
| 140 |
+
layer_params = attn_params_per_layer + ffn_params_per_layer + norm_params_per_layer
|
| 141 |
+
active_layer_params = attn_params_per_layer + active_ffn_params + norm_params_per_layer
|
| 142 |
+
|
| 143 |
+
total_params = embed_params + (config.num_hidden_layers * layer_params) + embed_params
|
| 144 |
+
active_params = embed_params + (config.num_hidden_layers * active_layer_params) + embed_params
|
| 145 |
+
|
| 146 |
+
return {
|
| 147 |
+
"total_params": total_params,
|
| 148 |
+
"active_params": active_params,
|
| 149 |
+
"activation_ratio": active_params / total_params,
|
| 150 |
+
"total_params_b": total_params / 1e9,
|
| 151 |
+
"active_params_b": active_params / 1e9,
|
| 152 |
+
"estimated_size_fp16_gb": (total_params * 2) / (1024**3),
|
| 153 |
+
"estimated_size_int4_gb": (total_params * 0.5) / (1024**3),
|
| 154 |
+
}
|
model_files/model/__init__.py
ADDED
|
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
MiniMind Max2 Model Package
|
| 3 |
+
A lightweight, efficient language model designed for edge deployment.
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
from .mind2_model import (
|
| 7 |
+
Max2ForCausalLM,
|
| 8 |
+
Max2Model,
|
| 9 |
+
Mind2ForCausalLM,
|
| 10 |
+
Mind2Model,
|
| 11 |
+
create_model
|
| 12 |
+
)
|
| 13 |
+
from .components import (
|
| 14 |
+
Max2Attention,
|
| 15 |
+
Max2MoE,
|
| 16 |
+
Max2DecoderLayer,
|
| 17 |
+
Max2RMSNorm,
|
| 18 |
+
Max2RotaryEmbedding,
|
| 19 |
+
Max2MLP,
|
| 20 |
+
Max2Expert,
|
| 21 |
+
# Backward compatibility
|
| 22 |
+
Mind2Attention,
|
| 23 |
+
Mind2MoE,
|
| 24 |
+
Mind2DecoderLayer,
|
| 25 |
+
Mind2RMSNorm,
|
| 26 |
+
Mind2RotaryEmbedding,
|
| 27 |
+
)
|
| 28 |
+
|
| 29 |
+
__all__ = [
|
| 30 |
+
# Max2 (primary)
|
| 31 |
+
"Max2ForCausalLM",
|
| 32 |
+
"Max2Model",
|
| 33 |
+
"Max2Attention",
|
| 34 |
+
"Max2MoE",
|
| 35 |
+
"Max2DecoderLayer",
|
| 36 |
+
"Max2RMSNorm",
|
| 37 |
+
"Max2RotaryEmbedding",
|
| 38 |
+
"Max2MLP",
|
| 39 |
+
"Max2Expert",
|
| 40 |
+
# Mind2 (backward compatibility)
|
| 41 |
+
"Mind2ForCausalLM",
|
| 42 |
+
"Mind2Model",
|
| 43 |
+
"Mind2Attention",
|
| 44 |
+
"Mind2MoE",
|
| 45 |
+
"Mind2DecoderLayer",
|
| 46 |
+
"Mind2RMSNorm",
|
| 47 |
+
"Mind2RotaryEmbedding",
|
| 48 |
+
# Factory
|
| 49 |
+
"create_model",
|
| 50 |
+
]
|
| 51 |
+
|
| 52 |
+
__version__ = "1.0.0"
|
model_files/model/components.py
ADDED
|
@@ -0,0 +1,274 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
MiniMind Max2 Model Components
|
| 3 |
+
Core building blocks: RMSNorm, RoPE, GQA Attention, MoE
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
import math
|
| 7 |
+
from typing import Optional, Tuple
|
| 8 |
+
import torch
|
| 9 |
+
import torch.nn as nn
|
| 10 |
+
import torch.nn.functional as F
|
| 11 |
+
|
| 12 |
+
import sys
|
| 13 |
+
from pathlib import Path
|
| 14 |
+
sys.path.insert(0, str(Path(__file__).parent.parent))
|
| 15 |
+
from configs.model_config import Max2Config
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
class Max2RMSNorm(nn.Module):
|
| 19 |
+
"""Root Mean Square Layer Normalization (faster than LayerNorm)."""
|
| 20 |
+
|
| 21 |
+
def __init__(self, hidden_size: int, eps: float = 1e-6):
|
| 22 |
+
super().__init__()
|
| 23 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
| 24 |
+
self.eps = eps
|
| 25 |
+
|
| 26 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 27 |
+
input_dtype = x.dtype
|
| 28 |
+
x = x.to(torch.float32)
|
| 29 |
+
variance = x.pow(2).mean(-1, keepdim=True)
|
| 30 |
+
x = x * torch.rsqrt(variance + self.eps)
|
| 31 |
+
return self.weight * x.to(input_dtype)
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
class Max2RotaryEmbedding(nn.Module):
|
| 35 |
+
"""Rotary Position Embedding (RoPE) for efficient position encoding."""
|
| 36 |
+
|
| 37 |
+
def __init__(self, dim: int, max_position_embeddings: int = 8192, base: float = 10000.0):
|
| 38 |
+
super().__init__()
|
| 39 |
+
self.dim = dim
|
| 40 |
+
self.max_position_embeddings = max_position_embeddings
|
| 41 |
+
self.base = base
|
| 42 |
+
|
| 43 |
+
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float() / self.dim))
|
| 44 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
| 45 |
+
self._set_cos_sin_cache(max_position_embeddings)
|
| 46 |
+
|
| 47 |
+
def _set_cos_sin_cache(self, seq_len: int):
|
| 48 |
+
self.max_seq_len_cached = seq_len
|
| 49 |
+
t = torch.arange(seq_len, dtype=torch.float32)
|
| 50 |
+
freqs = torch.outer(t, self.inv_freq)
|
| 51 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
| 52 |
+
self.register_buffer("cos_cached", emb.cos(), persistent=False)
|
| 53 |
+
self.register_buffer("sin_cached", emb.sin(), persistent=False)
|
| 54 |
+
|
| 55 |
+
def forward(self, x: torch.Tensor, seq_len: int) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 56 |
+
if seq_len > self.max_seq_len_cached:
|
| 57 |
+
self._set_cos_sin_cache(seq_len)
|
| 58 |
+
return self.cos_cached[:seq_len].to(x.dtype), self.sin_cached[:seq_len].to(x.dtype)
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
def rotate_half(x: torch.Tensor) -> torch.Tensor:
|
| 62 |
+
"""Rotate half the hidden dims of the input."""
|
| 63 |
+
x1, x2 = x[..., : x.shape[-1] // 2], x[..., x.shape[-1] // 2 :]
|
| 64 |
+
return torch.cat((-x2, x1), dim=-1)
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
def apply_rotary_pos_emb(q: torch.Tensor, k: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 68 |
+
"""Apply rotary position embeddings to query and key tensors."""
|
| 69 |
+
cos = cos.unsqueeze(0).unsqueeze(0)
|
| 70 |
+
sin = sin.unsqueeze(0).unsqueeze(0)
|
| 71 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
| 72 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
| 73 |
+
return q_embed, k_embed
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
class Max2Attention(nn.Module):
|
| 77 |
+
"""Grouped Query Attention (GQA) - fewer KV heads than Q heads for memory efficiency."""
|
| 78 |
+
|
| 79 |
+
def __init__(self, config: Max2Config, layer_idx: int):
|
| 80 |
+
super().__init__()
|
| 81 |
+
self.config = config
|
| 82 |
+
self.layer_idx = layer_idx
|
| 83 |
+
self.hidden_size = config.hidden_size
|
| 84 |
+
self.num_heads = config.num_attention_heads
|
| 85 |
+
self.num_kv_heads = config.num_key_value_heads
|
| 86 |
+
self.head_dim = self.hidden_size // self.num_heads
|
| 87 |
+
self.num_key_value_groups = self.num_heads // self.num_kv_heads
|
| 88 |
+
|
| 89 |
+
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
|
| 90 |
+
self.k_proj = nn.Linear(self.hidden_size, self.num_kv_heads * self.head_dim, bias=False)
|
| 91 |
+
self.v_proj = nn.Linear(self.hidden_size, self.num_kv_heads * self.head_dim, bias=False)
|
| 92 |
+
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
|
| 93 |
+
|
| 94 |
+
self.rotary_emb = Max2RotaryEmbedding(self.head_dim, config.max_position_embeddings, config.rope_theta)
|
| 95 |
+
self.attention_dropout = config.attention_dropout
|
| 96 |
+
|
| 97 |
+
def _repeat_kv(self, hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
| 98 |
+
if n_rep == 1:
|
| 99 |
+
return hidden_states
|
| 100 |
+
bs, num_kv_heads, seq_len, head_dim = hidden_states.shape
|
| 101 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(bs, num_kv_heads, n_rep, seq_len, head_dim)
|
| 102 |
+
return hidden_states.reshape(bs, num_kv_heads * n_rep, seq_len, head_dim)
|
| 103 |
+
|
| 104 |
+
def forward(
|
| 105 |
+
self,
|
| 106 |
+
hidden_states: torch.Tensor,
|
| 107 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 108 |
+
past_key_value: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
| 109 |
+
use_cache: bool = False,
|
| 110 |
+
) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, torch.Tensor]]]:
|
| 111 |
+
batch_size, seq_len, _ = hidden_states.shape
|
| 112 |
+
|
| 113 |
+
query_states = self.q_proj(hidden_states).view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
|
| 114 |
+
key_states = self.k_proj(hidden_states).view(batch_size, seq_len, self.num_kv_heads, self.head_dim).transpose(1, 2)
|
| 115 |
+
value_states = self.v_proj(hidden_states).view(batch_size, seq_len, self.num_kv_heads, self.head_dim).transpose(1, 2)
|
| 116 |
+
|
| 117 |
+
cos, sin = self.rotary_emb(value_states, seq_len)
|
| 118 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
| 119 |
+
|
| 120 |
+
if past_key_value is not None:
|
| 121 |
+
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
| 122 |
+
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
| 123 |
+
|
| 124 |
+
past_key_value = (key_states, value_states) if use_cache else None
|
| 125 |
+
|
| 126 |
+
key_states = self._repeat_kv(key_states, self.num_key_value_groups)
|
| 127 |
+
value_states = self._repeat_kv(value_states, self.num_key_value_groups)
|
| 128 |
+
|
| 129 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
| 130 |
+
if attention_mask is not None:
|
| 131 |
+
attn_weights = attn_weights + attention_mask
|
| 132 |
+
|
| 133 |
+
attn_weights = F.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
| 134 |
+
attn_weights = F.dropout(attn_weights, p=self.attention_dropout, training=self.training)
|
| 135 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
| 136 |
+
|
| 137 |
+
attn_output = attn_output.transpose(1, 2).contiguous().view(batch_size, seq_len, self.hidden_size)
|
| 138 |
+
attn_output = self.o_proj(attn_output)
|
| 139 |
+
|
| 140 |
+
return attn_output, past_key_value
|
| 141 |
+
|
| 142 |
+
|
| 143 |
+
class Max2MLP(nn.Module):
|
| 144 |
+
"""SwiGLU Feed-Forward Network."""
|
| 145 |
+
|
| 146 |
+
def __init__(self, hidden_size: int, intermediate_size: int):
|
| 147 |
+
super().__init__()
|
| 148 |
+
self.gate_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
|
| 149 |
+
self.up_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
|
| 150 |
+
self.down_proj = nn.Linear(intermediate_size, hidden_size, bias=False)
|
| 151 |
+
|
| 152 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 153 |
+
return self.down_proj(F.silu(self.gate_proj(x)) * self.up_proj(x))
|
| 154 |
+
|
| 155 |
+
|
| 156 |
+
class Max2Expert(nn.Module):
|
| 157 |
+
"""Single expert in the Mixture of Experts layer."""
|
| 158 |
+
|
| 159 |
+
def __init__(self, hidden_size: int, expert_hidden_size: int):
|
| 160 |
+
super().__init__()
|
| 161 |
+
self.mlp = Max2MLP(hidden_size, expert_hidden_size)
|
| 162 |
+
|
| 163 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 164 |
+
return self.mlp(x)
|
| 165 |
+
|
| 166 |
+
|
| 167 |
+
class Max2MoE(nn.Module):
|
| 168 |
+
"""
|
| 169 |
+
Mixture of Experts (MoE) layer.
|
| 170 |
+
Efficient parameter activation - only top-k experts are used per token.
|
| 171 |
+
Inspired by MiniMax M2's efficient activated parameters design.
|
| 172 |
+
"""
|
| 173 |
+
|
| 174 |
+
def __init__(self, config: Max2Config):
|
| 175 |
+
super().__init__()
|
| 176 |
+
self.hidden_size = config.hidden_size
|
| 177 |
+
self.num_experts = config.num_experts
|
| 178 |
+
self.num_experts_per_tok = config.num_experts_per_tok
|
| 179 |
+
self.expert_hidden_size = config.expert_hidden_size
|
| 180 |
+
|
| 181 |
+
self.gate = nn.Linear(self.hidden_size, self.num_experts, bias=False)
|
| 182 |
+
self.experts = nn.ModuleList([
|
| 183 |
+
Max2Expert(self.hidden_size, self.expert_hidden_size)
|
| 184 |
+
for _ in range(self.num_experts)
|
| 185 |
+
])
|
| 186 |
+
self.router_aux_loss_coef = config.router_aux_loss_coef
|
| 187 |
+
|
| 188 |
+
def forward(self, hidden_states: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 189 |
+
batch_size, seq_len, hidden_dim = hidden_states.shape
|
| 190 |
+
hidden_states_flat = hidden_states.view(-1, hidden_dim)
|
| 191 |
+
|
| 192 |
+
router_logits = self.gate(hidden_states_flat)
|
| 193 |
+
router_probs = F.softmax(router_logits, dim=-1, dtype=torch.float32)
|
| 194 |
+
|
| 195 |
+
router_weights, selected_experts = torch.topk(router_probs, self.num_experts_per_tok, dim=-1)
|
| 196 |
+
router_weights = router_weights.to(hidden_states.dtype)
|
| 197 |
+
router_weights = router_weights / router_weights.sum(dim=-1, keepdim=True)
|
| 198 |
+
|
| 199 |
+
final_hidden_states = torch.zeros_like(hidden_states_flat)
|
| 200 |
+
expert_mask = F.one_hot(selected_experts, num_classes=self.num_experts).permute(2, 1, 0)
|
| 201 |
+
|
| 202 |
+
for expert_idx in range(self.num_experts):
|
| 203 |
+
expert = self.experts[expert_idx]
|
| 204 |
+
for top_k_idx in range(self.num_experts_per_tok):
|
| 205 |
+
token_indices = expert_mask[expert_idx, top_k_idx].nonzero(as_tuple=True)[0]
|
| 206 |
+
if token_indices.numel() > 0:
|
| 207 |
+
expert_input = hidden_states_flat[token_indices]
|
| 208 |
+
expert_output = expert(expert_input)
|
| 209 |
+
weights = router_weights[token_indices, top_k_idx].unsqueeze(-1)
|
| 210 |
+
final_hidden_states[token_indices] += weights * expert_output
|
| 211 |
+
|
| 212 |
+
final_hidden_states = final_hidden_states.view(batch_size, seq_len, hidden_dim)
|
| 213 |
+
|
| 214 |
+
num_tokens = router_probs.shape[0]
|
| 215 |
+
expert_mask_float = F.one_hot(selected_experts, num_classes=self.num_experts).float()
|
| 216 |
+
tokens_per_expert = expert_mask_float.sum(dim=(0, 1)) / num_tokens
|
| 217 |
+
router_prob_per_expert = router_probs.mean(dim=0)
|
| 218 |
+
aux_loss = self.num_experts * (tokens_per_expert * router_prob_per_expert).sum() * self.router_aux_loss_coef
|
| 219 |
+
|
| 220 |
+
return final_hidden_states, aux_loss
|
| 221 |
+
|
| 222 |
+
|
| 223 |
+
class Max2DecoderLayer(nn.Module):
|
| 224 |
+
"""Single transformer decoder layer with GQA attention and MoE FFN."""
|
| 225 |
+
|
| 226 |
+
def __init__(self, config: Max2Config, layer_idx: int):
|
| 227 |
+
super().__init__()
|
| 228 |
+
self.hidden_size = config.hidden_size
|
| 229 |
+
self.self_attn = Max2Attention(config, layer_idx)
|
| 230 |
+
|
| 231 |
+
if config.use_moe:
|
| 232 |
+
self.mlp = Max2MoE(config)
|
| 233 |
+
self.use_moe = True
|
| 234 |
+
else:
|
| 235 |
+
self.mlp = Max2MLP(config.hidden_size, config.intermediate_size)
|
| 236 |
+
self.use_moe = False
|
| 237 |
+
|
| 238 |
+
self.input_layernorm = Max2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 239 |
+
self.post_attention_layernorm = Max2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 240 |
+
|
| 241 |
+
def forward(
|
| 242 |
+
self,
|
| 243 |
+
hidden_states: torch.Tensor,
|
| 244 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 245 |
+
past_key_value: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
| 246 |
+
use_cache: bool = False,
|
| 247 |
+
) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, torch.Tensor]], torch.Tensor]:
|
| 248 |
+
residual = hidden_states
|
| 249 |
+
hidden_states = self.input_layernorm(hidden_states)
|
| 250 |
+
hidden_states, present_key_value = self.self_attn(hidden_states, attention_mask, past_key_value, use_cache)
|
| 251 |
+
hidden_states = residual + hidden_states
|
| 252 |
+
|
| 253 |
+
residual = hidden_states
|
| 254 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
| 255 |
+
|
| 256 |
+
if self.use_moe:
|
| 257 |
+
hidden_states, aux_loss = self.mlp(hidden_states)
|
| 258 |
+
else:
|
| 259 |
+
hidden_states = self.mlp(hidden_states)
|
| 260 |
+
aux_loss = torch.tensor(0.0, device=hidden_states.device)
|
| 261 |
+
|
| 262 |
+
hidden_states = residual + hidden_states
|
| 263 |
+
|
| 264 |
+
return hidden_states, present_key_value, aux_loss
|
| 265 |
+
|
| 266 |
+
|
| 267 |
+
# Backward compatibility aliases
|
| 268 |
+
Mind2RMSNorm = Max2RMSNorm
|
| 269 |
+
Mind2RotaryEmbedding = Max2RotaryEmbedding
|
| 270 |
+
Mind2Attention = Max2Attention
|
| 271 |
+
Mind2MLP = Max2MLP
|
| 272 |
+
Mind2Expert = Max2Expert
|
| 273 |
+
Mind2MoE = Max2MoE
|
| 274 |
+
Mind2DecoderLayer = Max2DecoderLayer
|
model_files/model/mind2_model.py
ADDED
|
@@ -0,0 +1,185 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
MiniMind Max2 Main Model
|
| 3 |
+
Complete implementation of the Max2 language model.
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
from typing import List, Optional, Tuple
|
| 7 |
+
import torch
|
| 8 |
+
import torch.nn as nn
|
| 9 |
+
import torch.nn.functional as F
|
| 10 |
+
from torch.nn import CrossEntropyLoss
|
| 11 |
+
|
| 12 |
+
import sys
|
| 13 |
+
from pathlib import Path
|
| 14 |
+
sys.path.insert(0, str(Path(__file__).parent.parent))
|
| 15 |
+
from configs.model_config import Max2Config, get_config
|
| 16 |
+
from .components import Max2DecoderLayer, Max2RMSNorm
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
class Max2Model(nn.Module):
|
| 20 |
+
"""Max2 Transformer Model - outputs raw hidden states."""
|
| 21 |
+
|
| 22 |
+
def __init__(self, config: Max2Config):
|
| 23 |
+
super().__init__()
|
| 24 |
+
self.config = config
|
| 25 |
+
self.padding_idx = config.pad_token_id
|
| 26 |
+
self.vocab_size = config.vocab_size
|
| 27 |
+
|
| 28 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=self.padding_idx)
|
| 29 |
+
self.layers = nn.ModuleList([Max2DecoderLayer(config, i) for i in range(config.num_hidden_layers)])
|
| 30 |
+
self.norm = Max2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 31 |
+
|
| 32 |
+
self.gradient_checkpointing = False
|
| 33 |
+
self._init_weights()
|
| 34 |
+
|
| 35 |
+
def _init_weights(self):
|
| 36 |
+
for module in self.modules():
|
| 37 |
+
if isinstance(module, nn.Linear):
|
| 38 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
| 39 |
+
if module.bias is not None:
|
| 40 |
+
module.bias.data.zero_()
|
| 41 |
+
elif isinstance(module, nn.Embedding):
|
| 42 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
| 43 |
+
|
| 44 |
+
def _make_causal_mask(self, seq_len: int, dtype: torch.dtype, device: torch.device) -> torch.Tensor:
|
| 45 |
+
mask = torch.full((seq_len, seq_len), float("-inf"), dtype=dtype, device=device)
|
| 46 |
+
mask = torch.triu(mask, diagonal=1)
|
| 47 |
+
return mask.unsqueeze(0).unsqueeze(0)
|
| 48 |
+
|
| 49 |
+
def forward(
|
| 50 |
+
self,
|
| 51 |
+
input_ids: torch.LongTensor,
|
| 52 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 53 |
+
past_key_values: Optional[List[Tuple[torch.Tensor, torch.Tensor]]] = None,
|
| 54 |
+
use_cache: bool = False,
|
| 55 |
+
) -> Tuple[torch.Tensor, Optional[List[Tuple[torch.Tensor, torch.Tensor]]], torch.Tensor]:
|
| 56 |
+
batch_size, seq_len = input_ids.shape
|
| 57 |
+
hidden_states = self.embed_tokens(input_ids)
|
| 58 |
+
|
| 59 |
+
causal_mask = self._make_causal_mask(seq_len, hidden_states.dtype, hidden_states.device)
|
| 60 |
+
if attention_mask is not None:
|
| 61 |
+
padding_mask = (1.0 - attention_mask[:, None, None, :].to(hidden_states.dtype)) * float("-inf")
|
| 62 |
+
causal_mask = causal_mask + padding_mask
|
| 63 |
+
|
| 64 |
+
next_cache = [] if use_cache else None
|
| 65 |
+
total_aux_loss = torch.tensor(0.0, device=hidden_states.device)
|
| 66 |
+
|
| 67 |
+
for idx, layer in enumerate(self.layers):
|
| 68 |
+
past_kv = past_key_values[idx] if past_key_values else None
|
| 69 |
+
hidden_states, present_kv, aux_loss = layer(hidden_states, causal_mask, past_kv, use_cache)
|
| 70 |
+
|
| 71 |
+
if use_cache:
|
| 72 |
+
next_cache.append(present_kv)
|
| 73 |
+
total_aux_loss = total_aux_loss + aux_loss
|
| 74 |
+
|
| 75 |
+
hidden_states = self.norm(hidden_states)
|
| 76 |
+
return hidden_states, next_cache, total_aux_loss
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
class Max2ForCausalLM(nn.Module):
|
| 80 |
+
"""Max2 Model with Language Modeling head for text generation."""
|
| 81 |
+
|
| 82 |
+
def __init__(self, config: Max2Config):
|
| 83 |
+
super().__init__()
|
| 84 |
+
self.config = config
|
| 85 |
+
self.model = Max2Model(config)
|
| 86 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
| 87 |
+
self.lm_head.weight = self.model.embed_tokens.weight
|
| 88 |
+
|
| 89 |
+
def forward(
|
| 90 |
+
self,
|
| 91 |
+
input_ids: torch.LongTensor,
|
| 92 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 93 |
+
labels: Optional[torch.LongTensor] = None,
|
| 94 |
+
past_key_values: Optional[List[Tuple[torch.Tensor, torch.Tensor]]] = None,
|
| 95 |
+
use_cache: bool = False,
|
| 96 |
+
) -> Tuple[Optional[torch.Tensor], torch.Tensor, Optional[List], torch.Tensor]:
|
| 97 |
+
hidden_states, next_cache, aux_loss = self.model(input_ids, attention_mask, past_key_values, use_cache)
|
| 98 |
+
logits = self.lm_head(hidden_states).float()
|
| 99 |
+
|
| 100 |
+
loss = None
|
| 101 |
+
if labels is not None:
|
| 102 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
| 103 |
+
shift_labels = labels[..., 1:].contiguous()
|
| 104 |
+
loss = CrossEntropyLoss()(shift_logits.view(-1, self.config.vocab_size), shift_labels.view(-1))
|
| 105 |
+
loss = loss + aux_loss
|
| 106 |
+
|
| 107 |
+
return loss, logits, next_cache, aux_loss
|
| 108 |
+
|
| 109 |
+
@torch.no_grad()
|
| 110 |
+
def generate(
|
| 111 |
+
self,
|
| 112 |
+
input_ids: torch.LongTensor,
|
| 113 |
+
max_new_tokens: int = 100,
|
| 114 |
+
temperature: float = 1.0,
|
| 115 |
+
top_k: int = 50,
|
| 116 |
+
top_p: float = 0.95,
|
| 117 |
+
do_sample: bool = True,
|
| 118 |
+
) -> torch.LongTensor:
|
| 119 |
+
"""Simple generation with top-k/top-p sampling."""
|
| 120 |
+
generated = input_ids
|
| 121 |
+
past_key_values = None
|
| 122 |
+
|
| 123 |
+
for _ in range(max_new_tokens):
|
| 124 |
+
if past_key_values is None:
|
| 125 |
+
_, logits, past_key_values, _ = self(generated, use_cache=True)
|
| 126 |
+
else:
|
| 127 |
+
_, logits, past_key_values, _ = self(generated[:, -1:], past_key_values=past_key_values, use_cache=True)
|
| 128 |
+
|
| 129 |
+
next_token_logits = logits[:, -1, :] / temperature
|
| 130 |
+
|
| 131 |
+
if do_sample:
|
| 132 |
+
if top_k > 0:
|
| 133 |
+
indices_to_remove = next_token_logits < torch.topk(next_token_logits, top_k)[0][..., -1, None]
|
| 134 |
+
next_token_logits[indices_to_remove] = float('-inf')
|
| 135 |
+
|
| 136 |
+
if top_p < 1.0:
|
| 137 |
+
sorted_logits, sorted_indices = torch.sort(next_token_logits, descending=True)
|
| 138 |
+
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
|
| 139 |
+
sorted_indices_to_remove = cumulative_probs > top_p
|
| 140 |
+
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
|
| 141 |
+
sorted_indices_to_remove[..., 0] = 0
|
| 142 |
+
indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove)
|
| 143 |
+
next_token_logits[indices_to_remove] = float('-inf')
|
| 144 |
+
|
| 145 |
+
probs = F.softmax(next_token_logits, dim=-1)
|
| 146 |
+
next_token = torch.multinomial(probs, num_samples=1)
|
| 147 |
+
else:
|
| 148 |
+
next_token = torch.argmax(next_token_logits, dim=-1, keepdim=True)
|
| 149 |
+
|
| 150 |
+
generated = torch.cat([generated, next_token], dim=1)
|
| 151 |
+
|
| 152 |
+
if (next_token == self.config.eos_token_id).all():
|
| 153 |
+
break
|
| 154 |
+
|
| 155 |
+
return generated
|
| 156 |
+
|
| 157 |
+
|
| 158 |
+
# Backward compatibility aliases
|
| 159 |
+
Mind2Model = Max2Model
|
| 160 |
+
Mind2ForCausalLM = Max2ForCausalLM
|
| 161 |
+
|
| 162 |
+
|
| 163 |
+
def create_model(model_name: str = "max2-lite", device: str = "cuda", dtype: torch.dtype = torch.float16) -> Max2ForCausalLM:
|
| 164 |
+
"""Factory function to create a Max2 model."""
|
| 165 |
+
config = get_config(model_name)
|
| 166 |
+
model = Max2ForCausalLM(config)
|
| 167 |
+
return model.to(device=device, dtype=dtype) if torch.cuda.is_available() else model
|
| 168 |
+
|
| 169 |
+
|
| 170 |
+
if __name__ == "__main__":
|
| 171 |
+
for model_name in ["max2-nano", "max2-lite", "max2-pro"]:
|
| 172 |
+
print(f"\n{'='*50}\nTesting {model_name}\n{'='*50}")
|
| 173 |
+
config = get_config(model_name)
|
| 174 |
+
model = Max2ForCausalLM(config)
|
| 175 |
+
|
| 176 |
+
total_params = sum(p.numel() for p in model.parameters())
|
| 177 |
+
print(f"Total Parameters: {total_params / 1e9:.3f}B")
|
| 178 |
+
|
| 179 |
+
input_ids = torch.randint(0, config.vocab_size, (2, 128))
|
| 180 |
+
model.eval()
|
| 181 |
+
with torch.no_grad():
|
| 182 |
+
loss, logits, _, aux_loss = model(input_ids, labels=input_ids)
|
| 183 |
+
print(f"Logits shape: {logits.shape}")
|
| 184 |
+
print(f"Loss: {loss:.4f}, Aux loss: {aux_loss:.6f}")
|
| 185 |
+
print("Forward pass successful!")
|
requirements.txt
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch>=2.0.0
|
| 2 |
+
gradio>=4.0.0
|