Gabriel Bibbó
commited on
Commit
·
08ba0e7
1
Parent(s):
b0fd7d3
GitHub-faithful implementation - 32kHz, 2048 FFT, per-model delays, 80ms gaps
Browse files- app.py +384 -249
- requirements.txt +19 -0
app.py
CHANGED
|
@@ -7,6 +7,9 @@ from dataclasses import dataclass
|
|
| 7 |
from typing import List, Tuple, Dict
|
| 8 |
import threading
|
| 9 |
import queue
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
# Suppress warnings
|
| 12 |
warnings.filterwarnings('ignore')
|
|
@@ -37,6 +40,25 @@ except ImportError:
|
|
| 37 |
PLOTLY_AVAILABLE = False
|
| 38 |
print("⚠️ Plotly not available")
|
| 39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
print("🚀 Creating Real-time VAD Demo...")
|
| 41 |
|
| 42 |
# ===== DATA STRUCTURES =====
|
|
@@ -61,9 +83,8 @@ class OnsetOffset:
|
|
| 61 |
class OptimizedSileroVAD:
|
| 62 |
def __init__(self):
|
| 63 |
self.model = None
|
| 64 |
-
self.sample_rate = 16000
|
| 65 |
self.model_name = "Silero-VAD"
|
| 66 |
-
self.frame_duration = 0.030 # 30ms frames like GitHub
|
| 67 |
self.load_model()
|
| 68 |
|
| 69 |
def load_model(self):
|
|
@@ -90,35 +111,25 @@ class OptimizedSileroVAD:
|
|
| 90 |
if len(audio.shape) > 1:
|
| 91 |
audio = audio.mean(axis=1)
|
| 92 |
|
| 93 |
-
|
| 94 |
-
if len(audio)
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
# Use 30ms frames (GitHub style)
|
| 100 |
-
required_samples = int(self.sample_rate * self.frame_duration) # 480 samples at 16kHz
|
| 101 |
-
|
| 102 |
-
if len(audio) != required_samples:
|
| 103 |
-
if len(audio) > required_samples:
|
| 104 |
-
start_idx = (len(audio) - required_samples) // 2
|
| 105 |
-
audio_chunk = audio[start_idx:start_idx + required_samples]
|
| 106 |
-
else:
|
| 107 |
-
audio_chunk = np.pad(audio, (0, required_samples - len(audio)), 'constant')
|
| 108 |
else:
|
| 109 |
-
audio_chunk = audio
|
| 110 |
-
|
| 111 |
-
audio_tensor = torch.FloatTensor(audio_chunk).unsqueeze(0)
|
| 112 |
-
|
| 113 |
-
with torch.no_grad():
|
| 114 |
-
speech_prob = self.model(audio_tensor, self.sample_rate).item()
|
| 115 |
-
|
| 116 |
-
is_speech = speech_prob > 0.5
|
| 117 |
-
processing_time = time.time() - start_time
|
| 118 |
-
|
| 119 |
-
return VADResult(speech_prob, is_speech, self.model_name, processing_time, timestamp)
|
| 120 |
else:
|
| 121 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 122 |
|
| 123 |
except Exception as e:
|
| 124 |
print(f"Error in {self.model_name}: {e}")
|
|
@@ -127,10 +138,9 @@ class OptimizedSileroVAD:
|
|
| 127 |
class OptimizedWebRTCVAD:
|
| 128 |
def __init__(self):
|
| 129 |
self.model_name = "WebRTC-VAD"
|
| 130 |
-
self.sample_rate =
|
| 131 |
-
self.
|
| 132 |
-
self.
|
| 133 |
-
self.frame_size = int(self.webrtc_rate * self.frame_duration / 1000) # 160 samples
|
| 134 |
|
| 135 |
if WEBRTC_AVAILABLE:
|
| 136 |
try:
|
|
@@ -145,10 +155,9 @@ class OptimizedWebRTCVAD:
|
|
| 145 |
start_time = time.time()
|
| 146 |
|
| 147 |
if self.vad is None or len(audio) == 0:
|
| 148 |
-
# Energy-based fallback (GitHub style)
|
| 149 |
energy = np.sum(audio ** 2) if len(audio) > 0 else 0
|
| 150 |
threshold = 0.01
|
| 151 |
-
probability =
|
| 152 |
is_speech = energy > threshold
|
| 153 |
return VADResult(probability, is_speech, f"{self.model_name} (fallback)", time.time() - start_time, timestamp)
|
| 154 |
|
|
@@ -156,28 +165,19 @@ class OptimizedWebRTCVAD:
|
|
| 156 |
if len(audio.shape) > 1:
|
| 157 |
audio = audio.mean(axis=1)
|
| 158 |
|
| 159 |
-
|
| 160 |
-
if LIBROSA_AVAILABLE:
|
| 161 |
-
audio_16k = librosa.resample(audio, orig_sr=self.sample_rate, target_sr=self.webrtc_rate)
|
| 162 |
-
else:
|
| 163 |
-
# Simple downsampling
|
| 164 |
-
audio_16k = audio[::2] # Simple 2:1 downsampling
|
| 165 |
-
|
| 166 |
-
audio_int16 = (audio_16k * 32767).astype(np.int16)
|
| 167 |
|
| 168 |
-
# Process in 10ms frames (GitHub style)
|
| 169 |
speech_frames = 0
|
| 170 |
total_frames = 0
|
| 171 |
|
| 172 |
for i in range(0, len(audio_int16) - self.frame_size, self.frame_size):
|
| 173 |
frame = audio_int16[i:i + self.frame_size].tobytes()
|
| 174 |
-
if self.vad.is_speech(frame, self.
|
| 175 |
speech_frames += 1
|
| 176 |
total_frames += 1
|
| 177 |
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
is_speech = speech_frames > 0
|
| 181 |
|
| 182 |
return VADResult(probability, is_speech, self.model_name, time.time() - start_time, timestamp)
|
| 183 |
|
|
@@ -189,10 +189,7 @@ class OptimizedEPANNs:
|
|
| 189 |
def __init__(self):
|
| 190 |
self.model_name = "E-PANNs"
|
| 191 |
self.sample_rate = 32000
|
| 192 |
-
|
| 193 |
-
self.n_mfcc = 13
|
| 194 |
-
self.n_mels = 64
|
| 195 |
-
print(f"✅ {self.model_name} initialized (enhanced heuristic)")
|
| 196 |
|
| 197 |
def predict(self, audio: np.ndarray, timestamp: float = 0.0) -> VADResult:
|
| 198 |
start_time = time.time()
|
|
@@ -205,48 +202,18 @@ class OptimizedEPANNs:
|
|
| 205 |
audio = audio.mean(axis=1)
|
| 206 |
|
| 207 |
if LIBROSA_AVAILABLE:
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
mel_spec = librosa.feature.melspectrogram(
|
| 211 |
-
y=audio, sr=self.sample_rate,
|
| 212 |
-
n_mels=self.n_mels, n_fft=2048, hop_length=512
|
| 213 |
-
)
|
| 214 |
-
mel_energy = np.mean(librosa.power_to_db(mel_spec, ref=np.max))
|
| 215 |
-
|
| 216 |
-
# MFCC features (important for speech detection)
|
| 217 |
-
mfccs = librosa.feature.mfcc(y=audio, sr=self.sample_rate, n_mfcc=self.n_mfcc)
|
| 218 |
-
mfcc_energy = np.mean(np.abs(mfccs))
|
| 219 |
-
|
| 220 |
-
# Spectral features
|
| 221 |
spectral_centroid = np.mean(librosa.feature.spectral_centroid(y=audio, sr=self.sample_rate))
|
| 222 |
-
|
| 223 |
-
spectral_bandwidth = np.mean(librosa.feature.spectral_bandwidth(y=audio, sr=self.sample_rate))
|
| 224 |
-
|
| 225 |
-
# Zero crossing rate (important for speech/non-speech)
|
| 226 |
-
zcr = np.mean(librosa.feature.zero_crossing_rate(audio))
|
| 227 |
-
|
| 228 |
-
# Combine features with learned weights (approximating E-PANNs)
|
| 229 |
-
speech_score = (
|
| 230 |
-
0.3 * (mel_energy + 100) / 50 +
|
| 231 |
-
0.25 * mfcc_energy / 10 +
|
| 232 |
-
0.2 * spectral_centroid / 10000 +
|
| 233 |
-
0.15 * (1 - zcr) + # Lower ZCR for speech
|
| 234 |
-
0.1 * spectral_rolloff / 10000
|
| 235 |
-
)
|
| 236 |
-
|
| 237 |
else:
|
| 238 |
-
# Fallback with scipy
|
| 239 |
from scipy import signal
|
| 240 |
-
f, t, Sxx = signal.spectrogram(audio, self.sample_rate
|
| 241 |
-
|
| 242 |
-
# Simple features
|
| 243 |
energy = np.mean(10 * np.log10(Sxx + 1e-10))
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
speech_score = (energy + 100) / 50 + spectral_centroid / 10000
|
| 247 |
|
| 248 |
probability = np.clip(speech_score, 0, 1)
|
| 249 |
-
is_speech = probability > 0.6
|
| 250 |
|
| 251 |
return VADResult(probability, is_speech, self.model_name, time.time() - start_time, timestamp)
|
| 252 |
|
|
@@ -254,38 +221,196 @@ class OptimizedEPANNs:
|
|
| 254 |
print(f"Error in {self.model_name}: {e}")
|
| 255 |
return VADResult(0.0, False, self.model_name, time.time() - start_time, timestamp)
|
| 256 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 257 |
# ===== AUDIO PROCESSOR =====
|
| 258 |
|
| 259 |
class AudioProcessor:
|
| 260 |
-
def __init__(self, sample_rate=
|
| 261 |
self.sample_rate = sample_rate
|
| 262 |
self.chunk_duration = 4.0
|
| 263 |
self.chunk_size = int(sample_rate * self.chunk_duration)
|
| 264 |
|
| 265 |
-
#
|
| 266 |
-
self.n_fft =
|
| 267 |
-
self.hop_length =
|
| 268 |
self.n_mels = 128
|
| 269 |
self.fmin = 20
|
| 270 |
self.fmax = 8000
|
| 271 |
|
| 272 |
-
# Real-time processing parameters
|
| 273 |
-
self.window_size = 0.032 # 32ms windows like
|
| 274 |
-
self.hop_size = 0.
|
| 275 |
|
| 276 |
-
#
|
| 277 |
-
self.
|
| 278 |
-
|
| 279 |
-
'WebRTC-VAD': 0.0,
|
| 280 |
-
'E-PANNs': 0.0
|
| 281 |
-
}
|
| 282 |
-
self.delay_history = {model: [] for model in self.model_delays.keys()}
|
| 283 |
-
self.max_delay_history = 30 # Like GitHub
|
| 284 |
-
|
| 285 |
-
# Onset/offset parameters (matching GitHub)
|
| 286 |
-
self.min_event_gap = 0.08 # 80ms minimum gap
|
| 287 |
-
self.prob_thresh_high = 0.5
|
| 288 |
-
self.energy_db_thresh = -35
|
| 289 |
|
| 290 |
def process_audio(self, audio):
|
| 291 |
if audio is None:
|
|
@@ -304,8 +429,8 @@ class AudioProcessor:
|
|
| 304 |
if len(audio_data.shape) > 1:
|
| 305 |
audio_data = audio_data.mean(axis=1)
|
| 306 |
|
| 307 |
-
|
| 308 |
-
|
| 309 |
|
| 310 |
return audio_data
|
| 311 |
|
|
@@ -313,11 +438,11 @@ class AudioProcessor:
|
|
| 313 |
print(f"Audio processing error: {e}")
|
| 314 |
return np.array([])
|
| 315 |
|
| 316 |
-
def
|
| 317 |
-
"""Compute spectrogram
|
| 318 |
try:
|
| 319 |
if LIBROSA_AVAILABLE and len(audio_data) > 0:
|
| 320 |
-
#
|
| 321 |
stft = librosa.stft(
|
| 322 |
audio_data,
|
| 323 |
n_fft=self.n_fft,
|
|
@@ -341,12 +466,12 @@ class AudioProcessor:
|
|
| 341 |
mel_spec = np.dot(mel_basis, power_spec)
|
| 342 |
mel_spec_db = librosa.power_to_db(mel_spec, ref=np.max)
|
| 343 |
|
| 344 |
-
# Create time axis
|
| 345 |
time_frames = np.arange(mel_spec_db.shape[1]) * self.hop_length / self.sample_rate
|
| 346 |
|
| 347 |
return mel_spec_db, time_frames
|
| 348 |
else:
|
| 349 |
-
#
|
| 350 |
from scipy import signal
|
| 351 |
f, t, Sxx = signal.spectrogram(
|
| 352 |
audio_data,
|
|
@@ -356,13 +481,19 @@ class AudioProcessor:
|
|
| 356 |
window='hann'
|
| 357 |
)
|
| 358 |
|
| 359 |
-
# Create mel-like spectrogram
|
| 360 |
mel_spec_db = np.zeros((self.n_mels, Sxx.shape[1]))
|
| 361 |
|
| 362 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 363 |
for i in range(self.n_mels):
|
| 364 |
-
f_start =
|
| 365 |
-
f_end =
|
| 366 |
bin_start = int(f_start * len(f) / (self.sample_rate/2))
|
| 367 |
bin_end = int(f_end * len(f) / (self.sample_rate/2))
|
| 368 |
if bin_end > bin_start:
|
|
@@ -374,15 +505,15 @@ class AudioProcessor:
|
|
| 374 |
except Exception as e:
|
| 375 |
print(f"Spectrogram computation error: {e}")
|
| 376 |
# Return empty spectrogram
|
| 377 |
-
dummy_spec = np.zeros((self.n_mels,
|
| 378 |
-
dummy_time = np.linspace(0, len(audio_data) / self.sample_rate,
|
| 379 |
return dummy_spec, dummy_time
|
| 380 |
|
| 381 |
-
def
|
| 382 |
-
"""
|
| 383 |
onsets_offsets = []
|
| 384 |
|
| 385 |
-
if len(vad_results) < 3:
|
| 386 |
return onsets_offsets
|
| 387 |
|
| 388 |
# Group by model
|
|
@@ -392,7 +523,7 @@ class AudioProcessor:
|
|
| 392 |
models[result.model_name] = []
|
| 393 |
models[result.model_name].append(result)
|
| 394 |
|
| 395 |
-
#
|
| 396 |
for model_name, results in models.items():
|
| 397 |
if len(results) < 3:
|
| 398 |
continue
|
|
@@ -404,82 +535,104 @@ class AudioProcessor:
|
|
| 404 |
timestamps = np.array([r.timestamp for r in results])
|
| 405 |
probabilities = np.array([r.probability for r in results])
|
| 406 |
|
| 407 |
-
#
|
| 408 |
-
if len(probabilities) >
|
| 409 |
-
|
| 410 |
-
window_size =
|
| 411 |
-
|
| 412 |
-
|
| 413 |
-
|
|
|
|
| 414 |
|
| 415 |
-
# GitHub-style onset/offset detection
|
| 416 |
in_speech_segment = False
|
| 417 |
-
|
| 418 |
|
| 419 |
for i in range(1, len(results)):
|
| 420 |
-
|
|
|
|
| 421 |
curr_time = timestamps[i]
|
| 422 |
|
| 423 |
-
#
|
| 424 |
-
if not in_speech_segment and curr_prob >
|
| 425 |
-
|
| 426 |
-
|
| 427 |
-
|
| 428 |
-
|
| 429 |
-
|
| 430 |
-
|
| 431 |
-
last_event_time = curr_time
|
| 432 |
-
|
| 433 |
-
# GitHub-style offset detection with energy check
|
| 434 |
-
elif in_speech_segment and curr_prob < threshold:
|
| 435 |
in_speech_segment = False
|
| 436 |
-
if
|
| 437 |
-
|
| 438 |
-
|
| 439 |
-
|
| 440 |
-
|
| 441 |
-
|
| 442 |
-
|
| 443 |
-
|
| 444 |
-
|
| 445 |
-
|
| 446 |
-
|
| 447 |
-
|
| 448 |
-
|
| 449 |
-
|
| 450 |
-
|
| 451 |
-
|
| 452 |
-
# Handle ongoing speech at the end (GitHub style)
|
| 453 |
-
if in_speech_segment and 'current_onset_time' in locals():
|
| 454 |
onsets_offsets.append(OnsetOffset(
|
| 455 |
-
onset_time=current_onset_time,
|
| 456 |
offset_time=timestamps[-1],
|
| 457 |
model_name=model_name,
|
| 458 |
-
confidence=np.mean(
|
| 459 |
))
|
| 460 |
|
| 461 |
return onsets_offsets
|
| 462 |
|
| 463 |
-
def
|
| 464 |
-
"""
|
| 465 |
-
|
| 466 |
-
|
| 467 |
-
|
| 468 |
-
|
| 469 |
-
|
| 470 |
-
|
| 471 |
-
|
| 472 |
-
|
| 473 |
-
|
| 474 |
-
|
| 475 |
-
|
| 476 |
-
|
| 477 |
-
|
| 478 |
-
|
| 479 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 480 |
|
| 481 |
-
if
|
| 482 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 483 |
|
| 484 |
# ===== ENHANCED VISUALIZATION (Complete GitHub Implementation) =====
|
| 485 |
|
|
@@ -492,8 +645,8 @@ def create_realtime_plot(audio_data: np.ndarray, vad_results: List[VADResult],
|
|
| 492 |
return None
|
| 493 |
|
| 494 |
try:
|
| 495 |
-
# Compute
|
| 496 |
-
mel_spec_db, time_frames = processor.
|
| 497 |
|
| 498 |
# Create frequency axis
|
| 499 |
freq_axis = np.linspace(processor.fmin, processor.fmax, processor.n_mels)
|
|
@@ -703,7 +856,7 @@ def create_realtime_plot(audio_data: np.ndarray, vad_results: List[VADResult],
|
|
| 703 |
)
|
| 704 |
|
| 705 |
# Add resolution info
|
| 706 |
-
resolution_text = f"
|
| 707 |
fig.add_annotation(
|
| 708 |
text=resolution_text,
|
| 709 |
xref="paper", yref="paper",
|
|
@@ -728,40 +881,41 @@ def create_realtime_plot(audio_data: np.ndarray, vad_results: List[VADResult],
|
|
| 728 |
|
| 729 |
class VADDemo:
|
| 730 |
def __init__(self):
|
| 731 |
-
print("🎤 Initializing Real-time VAD Demo...")
|
| 732 |
|
| 733 |
-
self.processor = AudioProcessor(
|
| 734 |
self.models = {
|
| 735 |
'Silero-VAD': OptimizedSileroVAD(),
|
| 736 |
'WebRTC-VAD': OptimizedWebRTCVAD(),
|
| 737 |
-
'E-PANNs': OptimizedEPANNs()
|
|
|
|
|
|
|
| 738 |
}
|
| 739 |
|
| 740 |
print("🎤 Real-time VAD Demo initialized successfully")
|
| 741 |
print(f"📊 Available models: {list(self.models.keys())}")
|
| 742 |
-
print(f"🎵 Sample rate: {self.processor.sample_rate} Hz (GitHub standard)")
|
| 743 |
|
| 744 |
def process_audio_with_events(self, audio, model_a, model_b, threshold):
|
| 745 |
-
"""Process audio with GitHub demo functionality"""
|
| 746 |
|
| 747 |
if audio is None:
|
| 748 |
return None, "🔇 No audio detected", "Ready to process audio..."
|
| 749 |
|
| 750 |
try:
|
| 751 |
-
# Process audio
|
| 752 |
processed_audio = self.processor.process_audio(audio)
|
| 753 |
|
| 754 |
if len(processed_audio) == 0:
|
| 755 |
return None, "🎵 Processing audio...", "No audio data processed"
|
| 756 |
|
| 757 |
-
#
|
| 758 |
-
window_samples = int(self.processor.sample_rate * self.processor.window_size)
|
| 759 |
-
hop_samples = int(self.processor.sample_rate * self.processor.hop_size)
|
| 760 |
|
| 761 |
vad_results = []
|
| 762 |
selected_models = [model_a, model_b] if model_a != model_b else [model_a]
|
| 763 |
|
| 764 |
-
# Process with
|
| 765 |
for i in range(0, len(processed_audio) - window_samples, hop_samples):
|
| 766 |
chunk = processed_audio[i:i + window_samples]
|
| 767 |
timestamp = i / self.processor.sample_rate
|
|
@@ -773,48 +927,40 @@ class VADDemo:
|
|
| 773 |
result.is_speech = result.probability > threshold
|
| 774 |
vad_results.append(result)
|
| 775 |
|
| 776 |
-
#
|
| 777 |
-
|
| 778 |
-
if model_name in self.processor.model_delays:
|
| 779 |
-
# Simple delay estimation per model (could be enhanced)
|
| 780 |
-
self.processor.update_model_delay(model_name, 0.0) # Placeholder
|
| 781 |
|
| 782 |
-
#
|
| 783 |
-
onsets_offsets = self.processor.
|
| 784 |
|
| 785 |
-
# Create GitHub-style visualization
|
| 786 |
fig = create_realtime_plot(
|
| 787 |
processed_audio, vad_results, onsets_offsets,
|
| 788 |
self.processor, model_a, model_b, threshold
|
| 789 |
)
|
| 790 |
|
| 791 |
-
#
|
| 792 |
speech_detected = any(result.is_speech for result in vad_results)
|
| 793 |
total_speech_time = sum(1 for r in vad_results if r.is_speech) * self.processor.hop_size
|
| 794 |
|
| 795 |
-
|
| 796 |
-
delay_info = " | Delays: " + ", ".join([
|
| 797 |
-
f"{m}: {d*1000:.0f}ms" for m, d in self.processor.model_delays.items()
|
| 798 |
-
if m in selected_models and d != 0
|
| 799 |
-
]) if any(d != 0 for m, d in self.processor.model_delays.items() if m in selected_models) else ""
|
| 800 |
|
| 801 |
if speech_detected:
|
| 802 |
status_msg = f"🎙️ SPEECH DETECTED - {total_speech_time:.1f}s total{delay_info}"
|
| 803 |
else:
|
| 804 |
status_msg = f"🔇 No speech detected{delay_info}"
|
| 805 |
|
| 806 |
-
#
|
| 807 |
details_lines = [
|
| 808 |
-
f"📊 **
|
| 809 |
f"📏 **Audio Duration**: {len(processed_audio)/self.processor.sample_rate:.2f} seconds",
|
| 810 |
f"🎯 **Processing Windows**: {len(vad_results)} ({self.processor.window_size*1000:.0f}ms each)",
|
| 811 |
-
f"⏱️ **Time Resolution**: {self.processor.hop_size*1000:.0f}ms hop (
|
| 812 |
-
f"
|
| 813 |
-
f"🔧 **Min Event Gap**: {self.processor.min_event_gap*1000:.0f}ms (GitHub standard)",
|
| 814 |
""
|
| 815 |
]
|
| 816 |
|
| 817 |
-
# Enhanced model summaries
|
| 818 |
model_summaries = {}
|
| 819 |
for result in vad_results:
|
| 820 |
if result.model_name not in model_summaries:
|
|
@@ -836,20 +982,19 @@ class VADDemo:
|
|
| 836 |
std_prob = np.std(summary['probs'])
|
| 837 |
speech_ratio = summary['speech_chunks'] / summary['total_chunks']
|
| 838 |
avg_time = (summary['avg_time'] / summary['total_chunks']) * 1000
|
| 839 |
-
delay = self.processor.model_delays.get(model_name, 0.0) * 1000
|
| 840 |
|
| 841 |
status_icon = "🟢" if speech_ratio > 0.5 else "🟡" if speech_ratio > 0.2 else "🔴"
|
| 842 |
details_lines.extend([
|
| 843 |
-
f"{status_icon} **{model_name}
|
| 844 |
f" • Probability: {avg_prob:.3f} (±{std_prob:.3f}) [{summary['min_prob']:.3f}-{summary['max_prob']:.3f}]",
|
| 845 |
f" • Speech Detection: {speech_ratio*100:.1f}% ({summary['speech_chunks']}/{summary['total_chunks']} windows)",
|
| 846 |
f" • Processing Speed: {avg_time:.1f}ms/window (RTF: {avg_time/32:.3f})",
|
| 847 |
""
|
| 848 |
])
|
| 849 |
|
| 850 |
-
#
|
| 851 |
if onsets_offsets:
|
| 852 |
-
details_lines.append("🎯 **Speech Events (
|
| 853 |
total_speech_duration = 0
|
| 854 |
for i, event in enumerate(onsets_offsets[:10]): # Show first 10 events
|
| 855 |
if event.offset_time > event.onset_time:
|
|
@@ -875,16 +1020,6 @@ class VADDemo:
|
|
| 875 |
else:
|
| 876 |
details_lines.append("🎯 **Speech Events**: No clear onset/offset boundaries detected")
|
| 877 |
|
| 878 |
-
# Add GitHub implementation notes
|
| 879 |
-
details_lines.extend([
|
| 880 |
-
"",
|
| 881 |
-
"🔬 **GitHub Implementation Details**:",
|
| 882 |
-
f" • Spectrogram: {self.processor.n_fft}-point FFT, {self.processor.hop_length}-sample hop",
|
| 883 |
-
f" • Mel bins: {self.processor.n_mels} ({self.processor.fmin}-{self.processor.fmax} Hz)",
|
| 884 |
-
f" • Frame processing: 32ms windows, 16ms overlap",
|
| 885 |
-
f" • Delay compensation: Per-model with {self.processor.max_delay_history}-sample history"
|
| 886 |
-
])
|
| 887 |
-
|
| 888 |
details_text = "\n".join(details_lines)
|
| 889 |
|
| 890 |
return fig, status_msg, details_text
|
|
@@ -909,21 +1044,22 @@ def create_interface():
|
|
| 909 |
|
| 910 |
**Multi-Model Voice Activity Detection with Advanced Onset/Offset Detection**
|
| 911 |
|
| 912 |
-
✨ **
|
| 913 |
-
- 🟢 **Green markers**: Speech onset detection with
|
| 914 |
- 🔴 **Red markers**: Speech offset detection
|
| 915 |
-
- 📊 **
|
| 916 |
- 💫 **Separated probability curves**: Model A (yellow) in top panel, Model B (orange) in bottom
|
| 917 |
-
- 🔧 **
|
| 918 |
- 📈 **Threshold visualization**: Cyan threshold line on both panels
|
| 919 |
- 🎨 **Matched color palettes**: Same Viridis colorscale for both spectrograms
|
| 920 |
-
- 🎵 **32kHz processing**: GitHub-standard sample rate
|
| 921 |
|
| 922 |
| Model | Type | Description |
|
| 923 |
|-------|------|-------------|
|
| 924 |
| **Silero-VAD** | Neural Network | Production-ready VAD (1.8M params) |
|
| 925 |
| **WebRTC-VAD** | Signal Processing | Google's real-time VAD |
|
| 926 |
| **E-PANNs** | Deep Learning | Efficient audio analysis |
|
|
|
|
|
|
|
| 927 |
|
| 928 |
**Instructions:** Record audio → Select models → Adjust threshold → Analyze!
|
| 929 |
""")
|
|
@@ -933,14 +1069,14 @@ def create_interface():
|
|
| 933 |
gr.Markdown("### 🎛️ **Advanced Controls**")
|
| 934 |
|
| 935 |
model_a = gr.Dropdown(
|
| 936 |
-
choices=["Silero-VAD", "WebRTC-VAD", "E-PANNs"],
|
| 937 |
value="Silero-VAD",
|
| 938 |
label="Model A (Top Panel)"
|
| 939 |
)
|
| 940 |
|
| 941 |
model_b = gr.Dropdown(
|
| 942 |
-
choices=["Silero-VAD", "WebRTC-VAD", "E-PANNs"],
|
| 943 |
-
value="
|
| 944 |
label="Model B (Bottom Panel)"
|
| 945 |
)
|
| 946 |
|
|
@@ -960,7 +1096,7 @@ def create_interface():
|
|
| 960 |
2. 🔧 **Compare**: Different models in each panel
|
| 961 |
3. ⚙️ **Threshold**: Cyan line shows threshold level on both panels
|
| 962 |
4. 📈 **Curves**: Yellow (Model A) and orange (Model B) probability curves
|
| 963 |
-
5. 🔄 **
|
| 964 |
6. 👀 **Events**: Model-specific onset/offset detection per panel!
|
| 965 |
|
| 966 |
### 🎨 **Visualization Elements**
|
|
@@ -969,7 +1105,7 @@ def create_interface():
|
|
| 969 |
- **🔵 Cyan line**: Detection threshold (same on both panels)
|
| 970 |
- **🟡 Yellow curve**: Model A probability (top panel only)
|
| 971 |
- **🟠 Orange curve**: Model B probability (bottom panel only)
|
| 972 |
-
- **
|
| 973 |
""")
|
| 974 |
|
| 975 |
with gr.Column():
|
|
@@ -1017,10 +1153,10 @@ def create_interface():
|
|
| 1017 |
|
| 1018 |
**🎯 Core Innovations:**
|
| 1019 |
- **Advanced Onset/Offset Detection**: Sub-frame precision with delay compensation
|
| 1020 |
-
- **
|
| 1021 |
-
- **
|
| 1022 |
-
- **
|
| 1023 |
-
- **
|
| 1024 |
|
| 1025 |
**🏠 Real-World Applications:**
|
| 1026 |
- Smart home privacy: Remove conversations, keep environmental sounds
|
|
@@ -1032,8 +1168,7 @@ def create_interface():
|
|
| 1032 |
- **Precision**: 94.2% on CHiME-Home dataset
|
| 1033 |
- **Recall**: 91.8% with optimized thresholds
|
| 1034 |
- **Latency**: <50ms processing time (Real-Time Factor: 0.05)
|
| 1035 |
-
- **Resolution**:
|
| 1036 |
-
- **Sample Rate**: 32kHz processing (GitHub-faithful implementation)
|
| 1037 |
|
| 1038 |
**Citation:** *Speech Removal Framework for Privacy-Preserving Audio Recordings*, WASPAA 2025
|
| 1039 |
|
|
|
|
| 7 |
from typing import List, Tuple, Dict
|
| 8 |
import threading
|
| 9 |
import queue
|
| 10 |
+
import os
|
| 11 |
+
import requests
|
| 12 |
+
from pathlib import Path
|
| 13 |
|
| 14 |
# Suppress warnings
|
| 15 |
warnings.filterwarnings('ignore')
|
|
|
|
| 40 |
PLOTLY_AVAILABLE = False
|
| 41 |
print("⚠️ Plotly not available")
|
| 42 |
|
| 43 |
+
# PANNs imports
|
| 44 |
+
try:
|
| 45 |
+
import panns_inference
|
| 46 |
+
PANNS_AVAILABLE = True
|
| 47 |
+
print("✅ PANNs available")
|
| 48 |
+
except ImportError:
|
| 49 |
+
PANNS_AVAILABLE = False
|
| 50 |
+
print("⚠️ PANNs not available, using fallback")
|
| 51 |
+
|
| 52 |
+
# Transformers for AST
|
| 53 |
+
try:
|
| 54 |
+
from transformers import ASTForAudioClassification, ASTFeatureExtractor
|
| 55 |
+
import transformers
|
| 56 |
+
AST_AVAILABLE = True
|
| 57 |
+
print("✅ AST (Transformers) available")
|
| 58 |
+
except ImportError:
|
| 59 |
+
AST_AVAILABLE = False
|
| 60 |
+
print("⚠️ AST not available, using fallback")
|
| 61 |
+
|
| 62 |
print("🚀 Creating Real-time VAD Demo...")
|
| 63 |
|
| 64 |
# ===== DATA STRUCTURES =====
|
|
|
|
| 83 |
class OptimizedSileroVAD:
|
| 84 |
def __init__(self):
|
| 85 |
self.model = None
|
| 86 |
+
self.sample_rate = 16000
|
| 87 |
self.model_name = "Silero-VAD"
|
|
|
|
| 88 |
self.load_model()
|
| 89 |
|
| 90 |
def load_model(self):
|
|
|
|
| 111 |
if len(audio.shape) > 1:
|
| 112 |
audio = audio.mean(axis=1)
|
| 113 |
|
| 114 |
+
required_samples = 512
|
| 115 |
+
if len(audio) != required_samples:
|
| 116 |
+
if len(audio) > required_samples:
|
| 117 |
+
start_idx = (len(audio) - required_samples) // 2
|
| 118 |
+
audio_chunk = audio[start_idx:start_idx + required_samples]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
else:
|
| 120 |
+
audio_chunk = np.pad(audio, (0, required_samples - len(audio)), 'constant')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 121 |
else:
|
| 122 |
+
audio_chunk = audio
|
| 123 |
+
|
| 124 |
+
audio_tensor = torch.FloatTensor(audio_chunk).unsqueeze(0)
|
| 125 |
+
|
| 126 |
+
with torch.no_grad():
|
| 127 |
+
speech_prob = self.model(audio_tensor, self.sample_rate).item()
|
| 128 |
+
|
| 129 |
+
is_speech = speech_prob > 0.5
|
| 130 |
+
processing_time = time.time() - start_time
|
| 131 |
+
|
| 132 |
+
return VADResult(speech_prob, is_speech, self.model_name, processing_time, timestamp)
|
| 133 |
|
| 134 |
except Exception as e:
|
| 135 |
print(f"Error in {self.model_name}: {e}")
|
|
|
|
| 138 |
class OptimizedWebRTCVAD:
|
| 139 |
def __init__(self):
|
| 140 |
self.model_name = "WebRTC-VAD"
|
| 141 |
+
self.sample_rate = 16000
|
| 142 |
+
self.frame_duration = 30
|
| 143 |
+
self.frame_size = int(self.sample_rate * self.frame_duration / 1000)
|
|
|
|
| 144 |
|
| 145 |
if WEBRTC_AVAILABLE:
|
| 146 |
try:
|
|
|
|
| 155 |
start_time = time.time()
|
| 156 |
|
| 157 |
if self.vad is None or len(audio) == 0:
|
|
|
|
| 158 |
energy = np.sum(audio ** 2) if len(audio) > 0 else 0
|
| 159 |
threshold = 0.01
|
| 160 |
+
probability = min(energy / threshold, 1.0)
|
| 161 |
is_speech = energy > threshold
|
| 162 |
return VADResult(probability, is_speech, f"{self.model_name} (fallback)", time.time() - start_time, timestamp)
|
| 163 |
|
|
|
|
| 165 |
if len(audio.shape) > 1:
|
| 166 |
audio = audio.mean(axis=1)
|
| 167 |
|
| 168 |
+
audio_int16 = (audio * 32767).astype(np.int16)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 169 |
|
|
|
|
| 170 |
speech_frames = 0
|
| 171 |
total_frames = 0
|
| 172 |
|
| 173 |
for i in range(0, len(audio_int16) - self.frame_size, self.frame_size):
|
| 174 |
frame = audio_int16[i:i + self.frame_size].tobytes()
|
| 175 |
+
if self.vad.is_speech(frame, self.sample_rate):
|
| 176 |
speech_frames += 1
|
| 177 |
total_frames += 1
|
| 178 |
|
| 179 |
+
probability = speech_frames / max(total_frames, 1)
|
| 180 |
+
is_speech = probability > 0.3
|
|
|
|
| 181 |
|
| 182 |
return VADResult(probability, is_speech, self.model_name, time.time() - start_time, timestamp)
|
| 183 |
|
|
|
|
| 189 |
def __init__(self):
|
| 190 |
self.model_name = "E-PANNs"
|
| 191 |
self.sample_rate = 32000
|
| 192 |
+
print(f"✅ {self.model_name} initialized")
|
|
|
|
|
|
|
|
|
|
| 193 |
|
| 194 |
def predict(self, audio: np.ndarray, timestamp: float = 0.0) -> VADResult:
|
| 195 |
start_time = time.time()
|
|
|
|
| 202 |
audio = audio.mean(axis=1)
|
| 203 |
|
| 204 |
if LIBROSA_AVAILABLE:
|
| 205 |
+
mel_spec = librosa.feature.melspectrogram(y=audio, sr=self.sample_rate, n_mels=64)
|
| 206 |
+
energy = np.mean(librosa.power_to_db(mel_spec, ref=np.max))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 207 |
spectral_centroid = np.mean(librosa.feature.spectral_centroid(y=audio, sr=self.sample_rate))
|
| 208 |
+
speech_score = (energy + 100) / 50 + spectral_centroid / 10000
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 209 |
else:
|
|
|
|
| 210 |
from scipy import signal
|
| 211 |
+
f, t, Sxx = signal.spectrogram(audio, self.sample_rate)
|
|
|
|
|
|
|
| 212 |
energy = np.mean(10 * np.log10(Sxx + 1e-10))
|
| 213 |
+
speech_score = (energy + 100) / 50
|
|
|
|
|
|
|
| 214 |
|
| 215 |
probability = np.clip(speech_score, 0, 1)
|
| 216 |
+
is_speech = probability > 0.6
|
| 217 |
|
| 218 |
return VADResult(probability, is_speech, self.model_name, time.time() - start_time, timestamp)
|
| 219 |
|
|
|
|
| 221 |
print(f"Error in {self.model_name}: {e}")
|
| 222 |
return VADResult(0.0, False, self.model_name, time.time() - start_time, timestamp)
|
| 223 |
|
| 224 |
+
class OptimizedPANNs:
|
| 225 |
+
def __init__(self):
|
| 226 |
+
self.model_name = "PANNs"
|
| 227 |
+
self.sample_rate = 32000
|
| 228 |
+
self.model = None
|
| 229 |
+
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 230 |
+
self.load_model()
|
| 231 |
+
|
| 232 |
+
def load_model(self):
|
| 233 |
+
try:
|
| 234 |
+
if PANNS_AVAILABLE:
|
| 235 |
+
# Use panns_inference for easier model loading
|
| 236 |
+
from panns_inference import AudioTagging
|
| 237 |
+
self.model = AudioTagging(checkpoint_path=None, device=self.device)
|
| 238 |
+
print(f"✅ {self.model_name} loaded successfully")
|
| 239 |
+
else:
|
| 240 |
+
print(f"⚠️ {self.model_name} not available, using fallback")
|
| 241 |
+
self.model = None
|
| 242 |
+
except Exception as e:
|
| 243 |
+
print(f"❌ Error loading {self.model_name}: {e}")
|
| 244 |
+
self.model = None
|
| 245 |
+
|
| 246 |
+
def predict(self, audio: np.ndarray, timestamp: float = 0.0) -> VADResult:
|
| 247 |
+
start_time = time.time()
|
| 248 |
+
|
| 249 |
+
if self.model is None or len(audio) == 0:
|
| 250 |
+
# Fallback using basic energy detection
|
| 251 |
+
if len(audio) > 0:
|
| 252 |
+
energy = np.sum(audio ** 2)
|
| 253 |
+
threshold = 0.01
|
| 254 |
+
probability = min(energy / threshold, 1.0)
|
| 255 |
+
is_speech = energy > threshold
|
| 256 |
+
else:
|
| 257 |
+
probability = 0.0
|
| 258 |
+
is_speech = False
|
| 259 |
+
return VADResult(probability, is_speech, f"{self.model_name} (fallback)", time.time() - start_time, timestamp)
|
| 260 |
+
|
| 261 |
+
try:
|
| 262 |
+
if len(audio.shape) > 1:
|
| 263 |
+
audio = audio.mean(axis=1)
|
| 264 |
+
|
| 265 |
+
# Resample to 32kHz if needed
|
| 266 |
+
if LIBROSA_AVAILABLE and len(audio) > 0:
|
| 267 |
+
audio = librosa.resample(audio, orig_sr=16000, target_sr=self.sample_rate)
|
| 268 |
+
|
| 269 |
+
# Ensure minimum length for PANNs (10 seconds)
|
| 270 |
+
required_length = self.sample_rate * 10
|
| 271 |
+
if len(audio) < required_length:
|
| 272 |
+
audio = np.pad(audio, (0, required_length - len(audio)), 'constant')
|
| 273 |
+
elif len(audio) > required_length:
|
| 274 |
+
audio = audio[:required_length]
|
| 275 |
+
|
| 276 |
+
# Run inference
|
| 277 |
+
_, embeddings = self.model.inference(audio[None, :]) # Add batch dimension
|
| 278 |
+
|
| 279 |
+
# Use speech class probability (assuming class index for speech/voice)
|
| 280 |
+
# PANNs outputs 527 classes, we'll look for speech-related classes
|
| 281 |
+
speech_classes = [0, 1, 2, 3, 4, 5] # Typical speech-related indices
|
| 282 |
+
speech_prob = np.mean([embeddings[0][i] for i in speech_classes if i < len(embeddings[0])])
|
| 283 |
+
|
| 284 |
+
probability = float(np.clip(speech_prob, 0, 1))
|
| 285 |
+
is_speech = probability > 0.5
|
| 286 |
+
|
| 287 |
+
return VADResult(probability, is_speech, self.model_name, time.time() - start_time, timestamp)
|
| 288 |
+
|
| 289 |
+
except Exception as e:
|
| 290 |
+
print(f"Error in {self.model_name}: {e}")
|
| 291 |
+
# Fallback
|
| 292 |
+
if len(audio) > 0:
|
| 293 |
+
energy = np.sum(audio ** 2)
|
| 294 |
+
threshold = 0.01
|
| 295 |
+
probability = min(energy / threshold, 1.0)
|
| 296 |
+
is_speech = energy > threshold
|
| 297 |
+
else:
|
| 298 |
+
probability = 0.0
|
| 299 |
+
is_speech = False
|
| 300 |
+
return VADResult(probability, is_speech, f"{self.model_name} (error)", time.time() - start_time, timestamp)
|
| 301 |
+
|
| 302 |
+
class OptimizedAST:
|
| 303 |
+
def __init__(self):
|
| 304 |
+
self.model_name = "AST"
|
| 305 |
+
self.sample_rate = 16000
|
| 306 |
+
self.model = None
|
| 307 |
+
self.feature_extractor = None
|
| 308 |
+
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 309 |
+
self.load_model()
|
| 310 |
+
|
| 311 |
+
def load_model(self):
|
| 312 |
+
try:
|
| 313 |
+
if AST_AVAILABLE:
|
| 314 |
+
# Load pretrained AST model from Hugging Face
|
| 315 |
+
model_name = "MIT/ast-finetuned-audioset-10-10-0.4593"
|
| 316 |
+
self.feature_extractor = ASTFeatureExtractor.from_pretrained(model_name)
|
| 317 |
+
self.model = ASTForAudioClassification.from_pretrained(model_name)
|
| 318 |
+
self.model.to(self.device)
|
| 319 |
+
self.model.eval()
|
| 320 |
+
print(f"✅ {self.model_name} loaded successfully")
|
| 321 |
+
else:
|
| 322 |
+
print(f"⚠️ {self.model_name} not available, using fallback")
|
| 323 |
+
self.model = None
|
| 324 |
+
except Exception as e:
|
| 325 |
+
print(f"❌ Error loading {self.model_name}: {e}")
|
| 326 |
+
self.model = None
|
| 327 |
+
|
| 328 |
+
def predict(self, audio: np.ndarray, timestamp: float = 0.0) -> VADResult:
|
| 329 |
+
start_time = time.time()
|
| 330 |
+
|
| 331 |
+
if self.model is None or len(audio) == 0:
|
| 332 |
+
# Fallback using spectral features
|
| 333 |
+
if len(audio) > 0:
|
| 334 |
+
if LIBROSA_AVAILABLE:
|
| 335 |
+
spectral_centroid = np.mean(librosa.feature.spectral_centroid(y=audio, sr=self.sample_rate))
|
| 336 |
+
energy = np.sum(audio ** 2)
|
| 337 |
+
probability = min((energy * spectral_centroid) / 10000, 1.0)
|
| 338 |
+
else:
|
| 339 |
+
energy = np.sum(audio ** 2)
|
| 340 |
+
probability = min(energy / 0.01, 1.0)
|
| 341 |
+
is_speech = probability > 0.5
|
| 342 |
+
else:
|
| 343 |
+
probability = 0.0
|
| 344 |
+
is_speech = False
|
| 345 |
+
return VADResult(probability, is_speech, f"{self.model_name} (fallback)", time.time() - start_time, timestamp)
|
| 346 |
+
|
| 347 |
+
try:
|
| 348 |
+
if len(audio.shape) > 1:
|
| 349 |
+
audio = audio.mean(axis=1)
|
| 350 |
+
|
| 351 |
+
# Ensure minimum length (AST expects longer sequences)
|
| 352 |
+
min_length = self.sample_rate * 2 # 2 seconds minimum
|
| 353 |
+
if len(audio) < min_length:
|
| 354 |
+
audio = np.pad(audio, (0, min_length - len(audio)), 'constant')
|
| 355 |
+
|
| 356 |
+
# Process with feature extractor
|
| 357 |
+
inputs = self.feature_extractor(audio, sampling_rate=self.sample_rate, return_tensors="pt")
|
| 358 |
+
|
| 359 |
+
# Move to device
|
| 360 |
+
inputs = {k: v.to(self.device) for k, v in inputs.items()}
|
| 361 |
+
|
| 362 |
+
# Run inference
|
| 363 |
+
with torch.no_grad():
|
| 364 |
+
outputs = self.model(**inputs)
|
| 365 |
+
logits = outputs.logits
|
| 366 |
+
probs = torch.sigmoid(logits)
|
| 367 |
+
|
| 368 |
+
# Extract speech-related probabilities
|
| 369 |
+
# AudioSet classes: look for speech, voice, etc.
|
| 370 |
+
speech_indices = [0, 1, 2, 3, 4, 5] # First few classes often speech-related
|
| 371 |
+
speech_probs = probs[0][speech_indices]
|
| 372 |
+
speech_prob = torch.mean(speech_probs).item()
|
| 373 |
+
|
| 374 |
+
probability = float(np.clip(speech_prob, 0, 1))
|
| 375 |
+
is_speech = probability > 0.5
|
| 376 |
+
|
| 377 |
+
return VADResult(probability, is_speech, self.model_name, time.time() - start_time, timestamp)
|
| 378 |
+
|
| 379 |
+
except Exception as e:
|
| 380 |
+
print(f"Error in {self.model_name}: {e}")
|
| 381 |
+
# Fallback
|
| 382 |
+
if len(audio) > 0:
|
| 383 |
+
energy = np.sum(audio ** 2)
|
| 384 |
+
threshold = 0.01
|
| 385 |
+
probability = min(energy / threshold, 1.0)
|
| 386 |
+
is_speech = energy > threshold
|
| 387 |
+
else:
|
| 388 |
+
probability = 0.0
|
| 389 |
+
is_speech = False
|
| 390 |
+
return VADResult(probability, is_speech, f"{self.model_name} (error)", time.time() - start_time, timestamp)
|
| 391 |
+
|
| 392 |
# ===== AUDIO PROCESSOR =====
|
| 393 |
|
| 394 |
class AudioProcessor:
|
| 395 |
+
def __init__(self, sample_rate=16000):
|
| 396 |
self.sample_rate = sample_rate
|
| 397 |
self.chunk_duration = 4.0
|
| 398 |
self.chunk_size = int(sample_rate * self.chunk_duration)
|
| 399 |
|
| 400 |
+
# Ultra high-resolution spectrogram parameters
|
| 401 |
+
self.n_fft = 8192 # Ultra high frequency resolution
|
| 402 |
+
self.hop_length = 128 # Ultra high time resolution
|
| 403 |
self.n_mels = 128
|
| 404 |
self.fmin = 20
|
| 405 |
self.fmax = 8000
|
| 406 |
|
| 407 |
+
# Real-time processing parameters
|
| 408 |
+
self.window_size = 0.032 # 32ms windows like WebRTC
|
| 409 |
+
self.hop_size = 0.008 # 8ms hop for ultra-smooth processing
|
| 410 |
|
| 411 |
+
# Delay correction parameters
|
| 412 |
+
self.delay_compensation = 0.0
|
| 413 |
+
self.correlation_threshold = 0.7
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 414 |
|
| 415 |
def process_audio(self, audio):
|
| 416 |
if audio is None:
|
|
|
|
| 429 |
if len(audio_data.shape) > 1:
|
| 430 |
audio_data = audio_data.mean(axis=1)
|
| 431 |
|
| 432 |
+
if np.max(np.abs(audio_data)) > 0:
|
| 433 |
+
audio_data = audio_data / np.max(np.abs(audio_data))
|
| 434 |
|
| 435 |
return audio_data
|
| 436 |
|
|
|
|
| 438 |
print(f"Audio processing error: {e}")
|
| 439 |
return np.array([])
|
| 440 |
|
| 441 |
+
def compute_high_res_spectrogram(self, audio_data):
|
| 442 |
+
"""Compute high-resolution spectrogram matching GitHub demo quality"""
|
| 443 |
try:
|
| 444 |
if LIBROSA_AVAILABLE and len(audio_data) > 0:
|
| 445 |
+
# High-resolution STFT
|
| 446 |
stft = librosa.stft(
|
| 447 |
audio_data,
|
| 448 |
n_fft=self.n_fft,
|
|
|
|
| 466 |
mel_spec = np.dot(mel_basis, power_spec)
|
| 467 |
mel_spec_db = librosa.power_to_db(mel_spec, ref=np.max)
|
| 468 |
|
| 469 |
+
# Create high-resolution time axis
|
| 470 |
time_frames = np.arange(mel_spec_db.shape[1]) * self.hop_length / self.sample_rate
|
| 471 |
|
| 472 |
return mel_spec_db, time_frames
|
| 473 |
else:
|
| 474 |
+
# High-resolution fallback using scipy
|
| 475 |
from scipy import signal
|
| 476 |
f, t, Sxx = signal.spectrogram(
|
| 477 |
audio_data,
|
|
|
|
| 481 |
window='hann'
|
| 482 |
)
|
| 483 |
|
| 484 |
+
# Create mel-like spectrogram with better resolution
|
| 485 |
mel_spec_db = np.zeros((self.n_mels, Sxx.shape[1]))
|
| 486 |
|
| 487 |
+
# Logarithmic frequency spacing for mel-like scale
|
| 488 |
+
mel_freqs = np.logspace(
|
| 489 |
+
np.log10(self.fmin),
|
| 490 |
+
np.log10(min(self.fmax, self.sample_rate/2)),
|
| 491 |
+
self.n_mels + 1
|
| 492 |
+
)
|
| 493 |
+
|
| 494 |
for i in range(self.n_mels):
|
| 495 |
+
f_start = mel_freqs[i]
|
| 496 |
+
f_end = mel_freqs[i + 1]
|
| 497 |
bin_start = int(f_start * len(f) / (self.sample_rate/2))
|
| 498 |
bin_end = int(f_end * len(f) / (self.sample_rate/2))
|
| 499 |
if bin_end > bin_start:
|
|
|
|
| 505 |
except Exception as e:
|
| 506 |
print(f"Spectrogram computation error: {e}")
|
| 507 |
# Return empty spectrogram
|
| 508 |
+
dummy_spec = np.zeros((self.n_mels, 200)) # Higher resolution
|
| 509 |
+
dummy_time = np.linspace(0, len(audio_data) / self.sample_rate, 200)
|
| 510 |
return dummy_spec, dummy_time
|
| 511 |
|
| 512 |
+
def detect_onset_offset_advanced(self, vad_results: List[VADResult], threshold: float = 0.5) -> List[OnsetOffset]:
|
| 513 |
+
"""Advanced onset/offset detection with delay compensation"""
|
| 514 |
onsets_offsets = []
|
| 515 |
|
| 516 |
+
if len(vad_results) < 3: # Need at least 3 points for trend analysis
|
| 517 |
return onsets_offsets
|
| 518 |
|
| 519 |
# Group by model
|
|
|
|
| 523 |
models[result.model_name] = []
|
| 524 |
models[result.model_name].append(result)
|
| 525 |
|
| 526 |
+
# Advanced detection for each model
|
| 527 |
for model_name, results in models.items():
|
| 528 |
if len(results) < 3:
|
| 529 |
continue
|
|
|
|
| 535 |
timestamps = np.array([r.timestamp for r in results])
|
| 536 |
probabilities = np.array([r.probability for r in results])
|
| 537 |
|
| 538 |
+
# Apply smoothing to reduce noise
|
| 539 |
+
if len(probabilities) > 5:
|
| 540 |
+
window_size = min(5, len(probabilities) // 3)
|
| 541 |
+
probabilities = np.convolve(probabilities, np.ones(window_size)/window_size, mode='same')
|
| 542 |
+
|
| 543 |
+
# Detect crossings with hysteresis
|
| 544 |
+
upper_thresh = threshold + 0.1
|
| 545 |
+
lower_thresh = threshold - 0.1
|
| 546 |
|
|
|
|
| 547 |
in_speech_segment = False
|
| 548 |
+
current_onset_time = -1
|
| 549 |
|
| 550 |
for i in range(1, len(results)):
|
| 551 |
+
prev_prob = probabilities[i-1]
|
| 552 |
+
curr_prob = probabilities[i]
|
| 553 |
curr_time = timestamps[i]
|
| 554 |
|
| 555 |
+
# Onset detection: crossing upper threshold from below
|
| 556 |
+
if not in_speech_segment and prev_prob <= upper_thresh and curr_prob > upper_thresh:
|
| 557 |
+
in_speech_segment = True
|
| 558 |
+
# Apply delay compensation
|
| 559 |
+
current_onset_time = curr_time - self.delay_compensation
|
| 560 |
+
|
| 561 |
+
# Offset detection: crossing lower threshold from above
|
| 562 |
+
elif in_speech_segment and prev_prob >= lower_thresh and curr_prob < lower_thresh:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 563 |
in_speech_segment = False
|
| 564 |
+
if current_onset_time >= 0:
|
| 565 |
+
offset_time = curr_time - self.delay_compensation
|
| 566 |
+
onsets_offsets.append(OnsetOffset(
|
| 567 |
+
onset_time=max(0, current_onset_time),
|
| 568 |
+
offset_time=offset_time,
|
| 569 |
+
model_name=model_name,
|
| 570 |
+
confidence=np.mean(probabilities[
|
| 571 |
+
(timestamps >= current_onset_time) &
|
| 572 |
+
(timestamps <= offset_time)
|
| 573 |
+
]) if len(probabilities) > 0 else curr_prob
|
| 574 |
+
))
|
| 575 |
+
current_onset_time = -1
|
| 576 |
+
|
| 577 |
+
# Handle ongoing speech at the end
|
| 578 |
+
if in_speech_segment and current_onset_time >= 0:
|
|
|
|
|
|
|
|
|
|
| 579 |
onsets_offsets.append(OnsetOffset(
|
| 580 |
+
onset_time=max(0, current_onset_time),
|
| 581 |
offset_time=timestamps[-1],
|
| 582 |
model_name=model_name,
|
| 583 |
+
confidence=np.mean(probabilities[-3:]) if len(probabilities) >= 3 else probabilities[-1]
|
| 584 |
))
|
| 585 |
|
| 586 |
return onsets_offsets
|
| 587 |
|
| 588 |
+
def estimate_delay_compensation(self, audio_data, vad_results):
|
| 589 |
+
"""Estimate delay compensation using cross-correlation"""
|
| 590 |
+
try:
|
| 591 |
+
if len(audio_data) == 0 or len(vad_results) == 0:
|
| 592 |
+
return 0.0
|
| 593 |
+
|
| 594 |
+
# Create energy-based reference signal
|
| 595 |
+
window_size = int(self.sample_rate * self.window_size)
|
| 596 |
+
hop_size = int(self.sample_rate * self.hop_size)
|
| 597 |
+
|
| 598 |
+
energy_signal = []
|
| 599 |
+
for i in range(0, len(audio_data) - window_size, hop_size):
|
| 600 |
+
window = audio_data[i:i + window_size]
|
| 601 |
+
energy = np.sum(window ** 2)
|
| 602 |
+
energy_signal.append(energy)
|
| 603 |
+
|
| 604 |
+
energy_signal = np.array(energy_signal)
|
| 605 |
+
if len(energy_signal) == 0:
|
| 606 |
+
return 0.0
|
| 607 |
+
|
| 608 |
+
# Normalize energy signal
|
| 609 |
+
energy_signal = (energy_signal - np.mean(energy_signal)) / (np.std(energy_signal) + 1e-8)
|
| 610 |
+
|
| 611 |
+
# Create VAD probability signal
|
| 612 |
+
vad_times = np.array([r.timestamp for r in vad_results])
|
| 613 |
+
vad_probs = np.array([r.probability for r in vad_results])
|
| 614 |
+
|
| 615 |
+
# Interpolate VAD probabilities to match energy signal timing
|
| 616 |
+
energy_times = np.arange(len(energy_signal)) * self.hop_size
|
| 617 |
+
vad_interp = np.interp(energy_times, vad_times, vad_probs)
|
| 618 |
+
vad_interp = (vad_interp - np.mean(vad_interp)) / (np.std(vad_interp) + 1e-8)
|
| 619 |
+
|
| 620 |
+
# Cross-correlation to find delay
|
| 621 |
+
if len(energy_signal) > 10 and len(vad_interp) > 10:
|
| 622 |
+
correlation = np.correlate(energy_signal, vad_interp, mode='full')
|
| 623 |
+
delay_samples = np.argmax(correlation) - len(vad_interp) + 1
|
| 624 |
+
delay_seconds = delay_samples * self.hop_size
|
| 625 |
|
| 626 |
+
# Only apply compensation if correlation is strong enough
|
| 627 |
+
max_corr = np.max(correlation) / (len(vad_interp) * np.std(energy_signal) * np.std(vad_interp))
|
| 628 |
+
if max_corr > self.correlation_threshold:
|
| 629 |
+
self.delay_compensation = np.clip(delay_seconds, -0.1, 0.1) # Limit to ±100ms
|
| 630 |
+
|
| 631 |
+
return self.delay_compensation
|
| 632 |
+
|
| 633 |
+
except Exception as e:
|
| 634 |
+
print(f"Delay estimation error: {e}")
|
| 635 |
+
return 0.0
|
| 636 |
|
| 637 |
# ===== ENHANCED VISUALIZATION (Complete GitHub Implementation) =====
|
| 638 |
|
|
|
|
| 645 |
return None
|
| 646 |
|
| 647 |
try:
|
| 648 |
+
# Compute ultra high-resolution spectrogram
|
| 649 |
+
mel_spec_db, time_frames = processor.compute_high_res_spectrogram(audio_data)
|
| 650 |
|
| 651 |
# Create frequency axis
|
| 652 |
freq_axis = np.linspace(processor.fmin, processor.fmax, processor.n_mels)
|
|
|
|
| 856 |
)
|
| 857 |
|
| 858 |
# Add resolution info
|
| 859 |
+
resolution_text = f"Resolution: {processor.n_fft}-point FFT, {processor.hop_length}-sample hop"
|
| 860 |
fig.add_annotation(
|
| 861 |
text=resolution_text,
|
| 862 |
xref="paper", yref="paper",
|
|
|
|
| 881 |
|
| 882 |
class VADDemo:
|
| 883 |
def __init__(self):
|
| 884 |
+
print("🎤 Initializing Real-time VAD Demo with 5 models...")
|
| 885 |
|
| 886 |
+
self.processor = AudioProcessor()
|
| 887 |
self.models = {
|
| 888 |
'Silero-VAD': OptimizedSileroVAD(),
|
| 889 |
'WebRTC-VAD': OptimizedWebRTCVAD(),
|
| 890 |
+
'E-PANNs': OptimizedEPANNs(),
|
| 891 |
+
'PANNs': OptimizedPANNs(),
|
| 892 |
+
'AST': OptimizedAST()
|
| 893 |
}
|
| 894 |
|
| 895 |
print("🎤 Real-time VAD Demo initialized successfully")
|
| 896 |
print(f"📊 Available models: {list(self.models.keys())}")
|
|
|
|
| 897 |
|
| 898 |
def process_audio_with_events(self, audio, model_a, model_b, threshold):
|
| 899 |
+
"""Process audio with complete GitHub demo functionality"""
|
| 900 |
|
| 901 |
if audio is None:
|
| 902 |
return None, "🔇 No audio detected", "Ready to process audio..."
|
| 903 |
|
| 904 |
try:
|
| 905 |
+
# Process audio
|
| 906 |
processed_audio = self.processor.process_audio(audio)
|
| 907 |
|
| 908 |
if len(processed_audio) == 0:
|
| 909 |
return None, "🎵 Processing audio...", "No audio data processed"
|
| 910 |
|
| 911 |
+
# Real-time chunk processing with higher resolution
|
| 912 |
+
window_samples = int(self.processor.sample_rate * self.processor.window_size)
|
| 913 |
+
hop_samples = int(self.processor.sample_rate * self.processor.hop_size)
|
| 914 |
|
| 915 |
vad_results = []
|
| 916 |
selected_models = [model_a, model_b] if model_a != model_b else [model_a]
|
| 917 |
|
| 918 |
+
# Process with sliding windows for smooth analysis
|
| 919 |
for i in range(0, len(processed_audio) - window_samples, hop_samples):
|
| 920 |
chunk = processed_audio[i:i + window_samples]
|
| 921 |
timestamp = i / self.processor.sample_rate
|
|
|
|
| 927 |
result.is_speech = result.probability > threshold
|
| 928 |
vad_results.append(result)
|
| 929 |
|
| 930 |
+
# Estimate and apply delay compensation
|
| 931 |
+
delay_compensation = self.processor.estimate_delay_compensation(processed_audio, vad_results)
|
|
|
|
|
|
|
|
|
|
| 932 |
|
| 933 |
+
# Advanced onset/offset detection with delay compensation
|
| 934 |
+
onsets_offsets = self.processor.detect_onset_offset_advanced(vad_results, threshold)
|
| 935 |
|
| 936 |
+
# Create complete GitHub-style visualization
|
| 937 |
fig = create_realtime_plot(
|
| 938 |
processed_audio, vad_results, onsets_offsets,
|
| 939 |
self.processor, model_a, model_b, threshold
|
| 940 |
)
|
| 941 |
|
| 942 |
+
# Create enhanced status message
|
| 943 |
speech_detected = any(result.is_speech for result in vad_results)
|
| 944 |
total_speech_time = sum(1 for r in vad_results if r.is_speech) * self.processor.hop_size
|
| 945 |
|
| 946 |
+
delay_info = f" | Delay: {delay_compensation*1000:.1f}ms" if delay_compensation != 0 else ""
|
|
|
|
|
|
|
|
|
|
|
|
|
| 947 |
|
| 948 |
if speech_detected:
|
| 949 |
status_msg = f"🎙️ SPEECH DETECTED - {total_speech_time:.1f}s total{delay_info}"
|
| 950 |
else:
|
| 951 |
status_msg = f"🔇 No speech detected{delay_info}"
|
| 952 |
|
| 953 |
+
# Create comprehensive analysis
|
| 954 |
details_lines = [
|
| 955 |
+
f"📊 **Advanced VAD Analysis** (Threshold: {threshold:.2f})",
|
| 956 |
f"📏 **Audio Duration**: {len(processed_audio)/self.processor.sample_rate:.2f} seconds",
|
| 957 |
f"🎯 **Processing Windows**: {len(vad_results)} ({self.processor.window_size*1000:.0f}ms each)",
|
| 958 |
+
f"⏱️ **Time Resolution**: {self.processor.hop_size*1000:.0f}ms hop size (ultra-smooth)",
|
| 959 |
+
f"🔧 **Delay Compensation**: {delay_compensation*1000:.1f}ms",
|
|
|
|
| 960 |
""
|
| 961 |
]
|
| 962 |
|
| 963 |
+
# Enhanced model summaries
|
| 964 |
model_summaries = {}
|
| 965 |
for result in vad_results:
|
| 966 |
if result.model_name not in model_summaries:
|
|
|
|
| 982 |
std_prob = np.std(summary['probs'])
|
| 983 |
speech_ratio = summary['speech_chunks'] / summary['total_chunks']
|
| 984 |
avg_time = (summary['avg_time'] / summary['total_chunks']) * 1000
|
|
|
|
| 985 |
|
| 986 |
status_icon = "🟢" if speech_ratio > 0.5 else "🟡" if speech_ratio > 0.2 else "🔴"
|
| 987 |
details_lines.extend([
|
| 988 |
+
f"{status_icon} **{model_name}**:",
|
| 989 |
f" • Probability: {avg_prob:.3f} (±{std_prob:.3f}) [{summary['min_prob']:.3f}-{summary['max_prob']:.3f}]",
|
| 990 |
f" • Speech Detection: {speech_ratio*100:.1f}% ({summary['speech_chunks']}/{summary['total_chunks']} windows)",
|
| 991 |
f" • Processing Speed: {avg_time:.1f}ms/window (RTF: {avg_time/32:.3f})",
|
| 992 |
""
|
| 993 |
])
|
| 994 |
|
| 995 |
+
# Advanced onset/offset analysis
|
| 996 |
if onsets_offsets:
|
| 997 |
+
details_lines.append("🎯 **Speech Events (with Delay Compensation)**:")
|
| 998 |
total_speech_duration = 0
|
| 999 |
for i, event in enumerate(onsets_offsets[:10]): # Show first 10 events
|
| 1000 |
if event.offset_time > event.onset_time:
|
|
|
|
| 1020 |
else:
|
| 1021 |
details_lines.append("🎯 **Speech Events**: No clear onset/offset boundaries detected")
|
| 1022 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1023 |
details_text = "\n".join(details_lines)
|
| 1024 |
|
| 1025 |
return fig, status_msg, details_text
|
|
|
|
| 1044 |
|
| 1045 |
**Multi-Model Voice Activity Detection with Advanced Onset/Offset Detection**
|
| 1046 |
|
| 1047 |
+
✨ **Ultra-High Resolution Features**:
|
| 1048 |
+
- 🟢 **Green markers**: Speech onset detection with delay compensation
|
| 1049 |
- 🔴 **Red markers**: Speech offset detection
|
| 1050 |
+
- 📊 **Ultra-HD spectrograms**: 8192-point FFT, 128-sample hop (4x resolution)
|
| 1051 |
- 💫 **Separated probability curves**: Model A (yellow) in top panel, Model B (orange) in bottom
|
| 1052 |
+
- 🔧 **Auto delay correction**: Cross-correlation-based compensation
|
| 1053 |
- 📈 **Threshold visualization**: Cyan threshold line on both panels
|
| 1054 |
- 🎨 **Matched color palettes**: Same Viridis colorscale for both spectrograms
|
|
|
|
| 1055 |
|
| 1056 |
| Model | Type | Description |
|
| 1057 |
|-------|------|-------------|
|
| 1058 |
| **Silero-VAD** | Neural Network | Production-ready VAD (1.8M params) |
|
| 1059 |
| **WebRTC-VAD** | Signal Processing | Google's real-time VAD |
|
| 1060 |
| **E-PANNs** | Deep Learning | Efficient audio analysis |
|
| 1061 |
+
| **PANNs** | Deep CNN | Large-scale pretrained audio networks |
|
| 1062 |
+
| **AST** | Transformer | Audio Spectrogram Transformer |
|
| 1063 |
|
| 1064 |
**Instructions:** Record audio → Select models → Adjust threshold → Analyze!
|
| 1065 |
""")
|
|
|
|
| 1069 |
gr.Markdown("### 🎛️ **Advanced Controls**")
|
| 1070 |
|
| 1071 |
model_a = gr.Dropdown(
|
| 1072 |
+
choices=["Silero-VAD", "WebRTC-VAD", "E-PANNs", "PANNs", "AST"],
|
| 1073 |
value="Silero-VAD",
|
| 1074 |
label="Model A (Top Panel)"
|
| 1075 |
)
|
| 1076 |
|
| 1077 |
model_b = gr.Dropdown(
|
| 1078 |
+
choices=["Silero-VAD", "WebRTC-VAD", "E-PANNs", "PANNs", "AST"],
|
| 1079 |
+
value="PANNs",
|
| 1080 |
label="Model B (Bottom Panel)"
|
| 1081 |
)
|
| 1082 |
|
|
|
|
| 1096 |
2. 🔧 **Compare**: Different models in each panel
|
| 1097 |
3. ⚙️ **Threshold**: Cyan line shows threshold level on both panels
|
| 1098 |
4. 📈 **Curves**: Yellow (Model A) and orange (Model B) probability curves
|
| 1099 |
+
5. 🔄 **Auto-sync**: Automatic delay compensation
|
| 1100 |
6. 👀 **Events**: Model-specific onset/offset detection per panel!
|
| 1101 |
|
| 1102 |
### 🎨 **Visualization Elements**
|
|
|
|
| 1105 |
- **🔵 Cyan line**: Detection threshold (same on both panels)
|
| 1106 |
- **🟡 Yellow curve**: Model A probability (top panel only)
|
| 1107 |
- **🟠 Orange curve**: Model B probability (bottom panel only)
|
| 1108 |
+
- **Ultra-HD spectrograms**: 8192-point FFT, same Viridis colorscale
|
| 1109 |
""")
|
| 1110 |
|
| 1111 |
with gr.Column():
|
|
|
|
| 1153 |
|
| 1154 |
**🎯 Core Innovations:**
|
| 1155 |
- **Advanced Onset/Offset Detection**: Sub-frame precision with delay compensation
|
| 1156 |
+
- **Multi-Model Architecture**: Real-time comparison of 5 VAD approaches
|
| 1157 |
+
- **High-Resolution Analysis**: 8192-point FFT with 128-sample hop (ultra-smooth)
|
| 1158 |
+
- **Adaptive Thresholding**: Hysteresis-based decision boundaries
|
| 1159 |
+
- **Cross-Correlation Sync**: Automatic delay compensation up to ±100ms
|
| 1160 |
|
| 1161 |
**🏠 Real-World Applications:**
|
| 1162 |
- Smart home privacy: Remove conversations, keep environmental sounds
|
|
|
|
| 1168 |
- **Precision**: 94.2% on CHiME-Home dataset
|
| 1169 |
- **Recall**: 91.8% with optimized thresholds
|
| 1170 |
- **Latency**: <50ms processing time (Real-Time Factor: 0.05)
|
| 1171 |
+
- **Resolution**: 8ms time resolution, 128 mel bins (ultra-high definition)
|
|
|
|
| 1172 |
|
| 1173 |
**Citation:** *Speech Removal Framework for Privacy-Preserving Audio Recordings*, WASPAA 2025
|
| 1174 |
|
requirements.txt
CHANGED
|
@@ -18,6 +18,14 @@ plotly>=5.15.0,<5.18.0
|
|
| 18 |
transformers>=4.30.0,<4.40.0
|
| 19 |
datasets>=2.14.0,<2.18.0
|
| 20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
# Optional dependencies with fallbacks
|
| 22 |
webrtcvad>=2.0.10; python_version >= "3.8" and sys_platform != "darwin"
|
| 23 |
scikit-learn>=1.3.0,<1.4.0
|
|
@@ -28,3 +36,14 @@ matplotlib>=3.6.0,<3.8.0
|
|
| 28 |
|
| 29 |
# Pin pydantic to avoid conflicts (reported fix)
|
| 30 |
pydantic>=2.5.0,<2.8.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
transformers>=4.30.0,<4.40.0
|
| 19 |
datasets>=2.14.0,<2.18.0
|
| 20 |
|
| 21 |
+
# PANNs inference tool - for easy PANNs model loading
|
| 22 |
+
panns-inference>=0.1.0
|
| 23 |
+
|
| 24 |
+
# AST and transformers dependencies
|
| 25 |
+
accelerate>=0.20.0
|
| 26 |
+
safetensors>=0.3.0
|
| 27 |
+
tokenizers>=0.13.0
|
| 28 |
+
|
| 29 |
# Optional dependencies with fallbacks
|
| 30 |
webrtcvad>=2.0.10; python_version >= "3.8" and sys_platform != "darwin"
|
| 31 |
scikit-learn>=1.3.0,<1.4.0
|
|
|
|
| 36 |
|
| 37 |
# Pin pydantic to avoid conflicts (reported fix)
|
| 38 |
pydantic>=2.5.0,<2.8.0
|
| 39 |
+
|
| 40 |
+
# Additional dependencies for audio processing
|
| 41 |
+
resampy>=0.4.0
|
| 42 |
+
numba>=0.56.0
|
| 43 |
+
|
| 44 |
+
# For model downloads and caching
|
| 45 |
+
requests>=2.25.0
|
| 46 |
+
tqdm>=4.64.0
|
| 47 |
+
|
| 48 |
+
# Additional transformers ecosystem
|
| 49 |
+
huggingface-hub>=0.15.0
|