File size: 43,566 Bytes
a136f76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44bda5c
a136f76
 
 
44bda5c
a136f76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e175e31
 
a136f76
 
 
 
 
e175e31
a136f76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44bda5c
 
a136f76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e175e31
a136f76
 
 
 
 
e175e31
a136f76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e175e31
a136f76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e175e31
 
a136f76
 
 
 
 
 
 
 
e175e31
 
a136f76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e175e31
a136f76
 
 
 
 
 
 
 
e175e31
 
a136f76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e175e31
a136f76
 
 
 
 
 
 
 
e175e31
 
a136f76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e175e31
a136f76
 
 
 
 
 
44bda5c
 
 
a136f76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e175e31
a136f76
e175e31
a136f76
 
e175e31
a136f76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e175e31
a136f76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e175e31
a136f76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e175e31
a136f76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e175e31
a136f76
 
 
 
e175e31
a136f76
 
 
 
 
 
 
e175e31
a136f76
 
 
 
 
 
e175e31
a136f76
 
 
 
 
e175e31
a136f76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e175e31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a136f76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e175e31
a136f76
 
 
 
 
 
 
 
e175e31
a136f76
 
e175e31
a136f76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e175e31
a136f76
 
 
 
 
 
 
 
 
 
e175e31
 
 
a136f76
 
 
e175e31
a136f76
 
 
 
e175e31
 
a136f76
 
 
 
 
e175e31
a136f76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44bda5c
a136f76
 
 
 
 
 
 
 
 
44bda5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a136f76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44bda5c
a136f76
 
 
 
 
 
44bda5c
a136f76
44bda5c
a136f76
 
 
 
44bda5c
a136f76
 
 
 
44bda5c
a136f76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e175e31
44bda5c
 
 
 
a136f76
 
 
 
 
e175e31
 
a136f76
 
 
 
 
 
e175e31
a136f76
 
 
 
 
 
 
 
 
 
 
44bda5c
a136f76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e175e31
a136f76
 
44bda5c
a136f76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e175e31
a136f76
 
 
44bda5c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
import os, json, re, logging, requests, markdown, time, io
from datetime import datetime
import random
import base64
from io import BytesIO
from PIL import Image

import streamlit as st
from openai import OpenAI  # OpenAI 라이브러리

from gradio_client import Client
import pandas as pd
import PyPDF2  # For handling PDF files

# ──────────────────────────────── Environment Variables / Constants ─────────────────────────
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY", "")  
BRAVE_KEY      = os.getenv("SERPHOUSE_API_KEY", "")  # Keep this name
BRAVE_ENDPOINT = "https://api.search.brave.com/res/v1/web/search"
BRAVE_IMAGE_ENDPOINT = "https://api.search.brave.com/res/v1/images/search"
BRAVE_VIDEO_ENDPOINT = "https://api.search.brave.com/res/v1/videos/search"
BRAVE_NEWS_ENDPOINT  = "https://api.search.brave.com/res/v1/news/search"
IMAGE_API_URL  = "http://211.233.58.201:7896"
MAX_TOKENS     = 7999

# Brave Search modes and style definitions (in English)
SEARCH_MODES = {
    "comprehensive": "Comprehensive answer with multiple sources",
    "academic": "Academic and research-focused results",
    "news": "Latest news and current events",
    "technical": "Technical and specialized information",
    "educational": "Educational and learning resources"
}

RESPONSE_STYLES = {
    "professional": "Professional and formal tone",
    "casual": "Friendly and conversational tone",
    "simple": "Simple and easy to understand",
    "detailed": "Detailed and thorough explanations"
}

# Example search queries
EXAMPLE_QUERIES = {
    "example1": "What are the latest developments in quantum computing?",
    "example2": "How does climate change affect biodiversity in tropical rainforests?",
    "example3": "What are the economic implications of artificial intelligence in the job market?"
}

# ──────────────────────────────── Logging ────────────────────────────────
logging.basicConfig(level=logging.INFO,
                    format="%(asctime)s - %(levelname)s - %(message)s")

# ──────────────────────────────── OpenAI Client ──────────────────────────

@st.cache_resource
def get_openai_client():
    """Create an OpenAI client with timeout and retry settings."""
    if not OPENAI_API_KEY:
        raise RuntimeError("⚠️ OPENAI_API_KEY ν™˜κ²½ λ³€μˆ˜κ°€ μ„€μ •λ˜μ§€ μ•Šμ•˜μŠ΅λ‹ˆλ‹€.")
    return OpenAI(
        api_key=OPENAI_API_KEY,
        timeout=60.0,
        max_retries=3
    )
    
# ──────────────────────────────── System Prompt ─────────────────────────
def get_system_prompt(mode="comprehensive", style="professional", include_search_results=True, include_uploaded_files=False) -> str:
    """
    Generate a system prompt for the 'Perplexity Clone' interface based on:
    - The selected search mode and style
    - Guidelines for using web search results and uploaded files
    """
    comprehensive_prompt = """
You are an advanced AI assistant that provides comprehensive answers with multiple sources, similar to Perplexity.

Your task is to:
1. Thoroughly analyze the user's query
2. Provide a clear, well-structured answer integrating information from multiple sources
3. Include relevant images, videos, and links in your response
4. Format your answer with proper headings, bullet points, and sections
5. Cite sources inline and provide a references section at the end

Important guidelines:
- Organize information logically with clear section headings
- Use bullet points and numbered lists for clarity
- Include specific, factual information whenever possible
- Provide balanced perspectives on controversial topics
- Display relevant statistics, data, or quotes when appropriate
- Format your response using markdown for readability
"""

    mode_prompts = {
        "academic": """
Your focus is on providing academic and research-focused responses:
- Prioritize peer-reviewed research and academic sources
- Include citations in a formal academic format
- Discuss methodologies and research limitations where relevant
- Present different scholarly perspectives on the topic
- Use precise, technical language appropriate for an academic audience
""",
        "news": """
Your focus is on providing the latest news and current events:
- Prioritize recent news articles and current information
- Include publication dates for all news sources
- Present multiple perspectives from different news outlets
- Distinguish between facts and opinions/editorial content
- Update information with the most recent developments
""",
        "technical": """
Your focus is on providing technical and specialized information:
- Use precise technical terminology appropriate to the field
- Include code snippets, formulas, or technical diagrams where relevant
- Break down complex concepts into step-by-step explanations
- Reference technical documentation, standards, and best practices
- Consider different technical approaches or methodologies
""",
        "educational": """
Your focus is on providing educational and learning resources:
- Structure information in a learning-friendly progression
- Include examples, analogies, and visual explanations
- Highlight key concepts and definitions
- Suggest further learning resources at different difficulty levels
- Present information that's accessible to learners at various levels
"""
    }

    style_guides = {
        "professional": "Use a professional, authoritative voice. Clearly explain technical terms and present data systematically.",
        "casual": "Use a relaxed, conversational style with a friendly tone. Include relatable examples and occasionally use informal expressions.",
        "simple": "Use straightforward language and avoid jargon. Keep sentences and paragraphs short. Explain concepts as if to someone with no background in the subject.",
        "detailed": "Provide thorough explanations with comprehensive background information. Explore nuances and edge cases. Present multiple perspectives and detailed analysis."
    }

    search_guide = """
Guidelines for Using Search Results:
- Include source links directly in your response using markdown: [Source Name](URL)
- For each major claim or piece of information, indicate its source
- If sources conflict, explain the different perspectives and their reliability
- Include relevant images by writing: ![Image description](image_url)
- Include relevant video links when appropriate by writing: [Video: Title](video_url)
- Format search information into a cohesive, well-structured response
- Include a "References" section at the end listing all major sources with links
"""

    upload_guide = """
Guidelines for Using Uploaded Files:
- Treat the uploaded files as primary sources for your response
- Extract and highlight key information from files that directly addresses the query
- Quote relevant passages and cite the specific file
- For numerical data in CSV files, consider creating summary statements
- For PDF content, reference specific sections or pages
- Integrate file information seamlessly with web search results
- When information conflicts, prioritize file content over general web results
"""

    # Base prompt
    if mode == "comprehensive":
        final_prompt = comprehensive_prompt
    else:
        final_prompt = comprehensive_prompt + "\n" + mode_prompts.get(mode, "")

    # Style
    if style in style_guides:
        final_prompt += f"\n\nTone and Style: {style_guides[style]}"

    if include_search_results:
        final_prompt += f"\n\n{search_guide}"

    if include_uploaded_files:
        final_prompt += f"\n\n{upload_guide}"

    final_prompt += """
\n\nAdditional Formatting Requirements:
- Use markdown headings (## and ###) to organize your response 
- Use bold text (**text**) for emphasis on important points
- Include a "Related Questions" section at the end with 3-5 follow-up questions
- Format your response with proper spacing and paragraph breaks
- Make all links clickable by using proper markdown format: [text](url)
"""
    return final_prompt

# ──────────────────────────────── Brave Search API ────────────────────────
@st.cache_data(ttl=3600)
def brave_search(query: str, count: int = 20):
    if not BRAVE_KEY:
        raise RuntimeError("⚠️ SERPHOUSE_API_KEY (Brave API Key) environment variable is empty.")

    headers = {"Accept": "application/json", "Accept-Encoding": "gzip", "X-Subscription-Token": BRAVE_KEY}
    params = {"q": query, "count": str(count)}

    for attempt in range(3):
        try:
            r = requests.get(BRAVE_ENDPOINT, headers=headers, params=params, timeout=15)
            r.raise_for_status()
            data = r.json()

            logging.info(f"Brave search result data structure: {list(data.keys())}")

            raw = data.get("web", {}).get("results") or data.get("results", [])
            if not raw:
                logging.warning(f"No Brave search results found. Response: {data}")
                raise ValueError("No search results found.")
            
            arts = []
            for i, res in enumerate(raw[:count], 1):
                url = res.get("url", res.get("link", ""))
                host = re.sub(r"https?://(www\.)?", "", url).split("/")[0]
                arts.append({
                    "index": i,
                    "title": res.get("title", "No title"),
                    "link": url,
                    "snippet": res.get("description", res.get("text", "No snippet")),
                    "displayed_link": host
                })

            logging.info(f"Brave search success: {len(arts)} results")
            return arts

        except Exception as e:
            logging.error(f"Brave search failure (attempt {attempt+1}/3): {e}")
            if attempt < 2:
                # μ—¬κΈ°μ„œ λŒ€κΈ° μ‹œκ°„ 늘림 (2초 β†’ 5초)
                time.sleep(5)

    return []

@st.cache_data(ttl=3600)
def brave_image_search(query: str, count: int = 10):
    if not BRAVE_KEY:
        raise RuntimeError("⚠️ SERPHOUSE_API_KEY (Brave API Key) environment variable is empty.")

    headers = {"Accept": "application/json","Accept-Encoding": "gzip","X-Subscription-Token": BRAVE_KEY}
    params = {"q": query, "count": str(count),"search_lang": "en","country": "us","spellcheck": "1"}

    for attempt in range(3):
        try:
            r = requests.get(BRAVE_IMAGE_ENDPOINT, headers=headers, params=params, timeout=15)
            r.raise_for_status()
            data = r.json()

            results = []
            for i, img in enumerate(data.get("results", [])[:count], 1):
                results.append({
                    "index": i,
                    "title": img.get("title", "Image"),
                    "image_url": img.get("image", {}).get("url", ""),
                    "source_url": img.get("source", ""),
                    "width": img.get("image", {}).get("width", 0),
                    "height": img.get("image", {}).get("height", 0)
                })

            logging.info(f"Brave image search success: {len(results)} results")
            return results

        except Exception as e:
            logging.error(f"Brave image search failure (attempt {attempt+1}/3): {e}")
            if attempt < 2:
                time.sleep(5)

    return []

@st.cache_data(ttl=3600)
def brave_video_search(query: str, count: int = 5):
    if not BRAVE_KEY:
        raise RuntimeError("⚠️ SERPHOUSE_API_KEY (Brave API Key) environment variable is empty.")

    headers = {"Accept": "application/json","Accept-Encoding": "gzip","X-Subscription-Token": BRAVE_KEY}
    params = {"q": query, "count": str(count)}

    for attempt in range(3):
        try:
            r = requests.get(BRAVE_VIDEO_ENDPOINT, headers=headers, params=params, timeout=15)
            r.raise_for_status()
            data = r.json()

            results = []
            for i, vid in enumerate(data.get("results", [])[:count], 1):
                results.append({
                    "index": i,
                    "title": vid.get("title", "Video"),
                    "video_url": vid.get("url", ""),
                    "thumbnail_url": vid.get("thumbnail", {}).get("src", ""),
                    "source": vid.get("provider", {}).get("name", "Unknown source")
                })

            logging.info(f"Brave video search success: {len(results)} results")
            return results

        except Exception as e:
            logging.error(f"Brave video search failure (attempt {attempt+1}/3): {e}")
            if attempt < 2:
                time.sleep(5)

    return []

@st.cache_data(ttl=3600)
def brave_news_search(query: str, count: int = 5):
    if not BRAVE_KEY:
        raise RuntimeError("⚠️ SERPHOUSE_API_KEY (Brave API Key) environment variable is empty.")

    headers = {"Accept": "application/json","Accept-Encoding": "gzip","X-Subscription-Token": BRAVE_KEY}
    params = {"q": query, "count": str(count)}

    for attempt in range(3):
        try:
            r = requests.get(BRAVE_NEWS_ENDPOINT, headers=headers, params=params, timeout=15)
            r.raise_for_status()
            data = r.json()

            results = []
            for i, news in enumerate(data.get("results", [])[:count], 1):
                results.append({
                    "index": i,
                    "title": news.get("title", "News article"),
                    "url": news.get("url", ""),
                    "description": news.get("description", ""),
                    "source": news.get("source", "Unknown source"),
                    "date": news.get("age", "Unknown date")
                })

            logging.info(f"Brave news search success: {len(results)} results")
            return results

        except Exception as e:
            logging.error(f"Brave news search failure (attempt {attempt+1}/3): {e}")
            if attempt < 2:
                time.sleep(5)

    return []

def mock_results(query: str) -> str:
    ts = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
    return (f"# Fallback Search Content (Generated: {ts})\n\n"
            f"The search API request failed or returned no results for '{query}'. "
            f"Please generate a response based on any pre-existing knowledge.\n\n"
            f"Consider these points:\n\n"
            f"- Basic concepts and importance of {query}\n"
            f"- Commonly known related statistics or trends\n"
            f"- Typical expert opinions on this subject\n"
            f"- Questions that readers might have\n\n"
            f"Note: This is fallback guidance, not real-time data.\n\n")

def do_web_search(query: str) -> str:
    try:
        arts = brave_search(query, 20)
        if not arts:
            logging.warning("No search results, using fallback content")
            return mock_results(query)

        images = brave_image_search(query, 5)
        videos = brave_video_search(query, 2)
        news   = brave_news_search(query, 3)
        
        result = "# Web Search Results\nUse these results to provide a comprehensive answer with multiple sources.\n\n"
        
        result += "## Web Results\n\n"
        for a in arts[:10]:
            result += f"### Result {a['index']}: {a['title']}\n\n{a['snippet']}\n\n"
            result += f"**Source**: [{a['displayed_link']}]({a['link']})\n\n---\n"
        
        if images:
            result += "## Image Results\n\n"
            for img in images:
                if img.get('image_url'):
                    result += f"![{img['title']}]({img['image_url']})\n\n"
                    result += f"**Source**: [{img.get('source_url', 'Image source')}]({img.get('source_url', '#')})\n\n"
        
        if videos:
            result += "## Video Results\n\n"
            for vid in videos:
                result += f"### {vid['title']}\n\n"
                if vid.get('thumbnail_url'):
                    result += f"![Thumbnail]({vid['thumbnail_url']})\n\n"
                result += f"**Watch**: [{vid['source']}]({vid['video_url']})\n\n"
        
        if news:
            result += "## News Results\n\n"
            for n in news:
                result += f"### {n['title']}\n\n{n['description']}\n\n"
                result += f"**Source**: [{n['source']}]({n['url']}) - {n['date']}\n\n---\n"
        
        return result
        
    except Exception as e:
        logging.error(f"Web search process failed: {str(e)}")
        return mock_results(query)

# ──────────────────────────────── File Upload Handling ─────────────────────
def process_text_file(file):
    try:
        content = file.read()
        file.seek(0)

        text = content.decode('utf-8', errors='ignore')
        if len(text) > 10000:
            text = text[:9700] + "...(truncated)..."

        result = f"## Text File: {file.name}\n\n" + text
        return result
    except Exception as e:
        logging.error(f"Error processing text file: {str(e)}")
        return f"Error processing text file: {str(e)}"

def process_csv_file(file):
    try:
        content = file.read()
        file.seek(0)

        df = pd.read_csv(io.BytesIO(content))
        result = f"## CSV File: {file.name}\n\n"
        result += f"- Rows: {len(df)}\n"
        result += f"- Columns: {len(df.columns)}\n"
        result += f"- Column Names: {', '.join(df.columns.tolist())}\n\n"

        result += "### Data Preview\n\n"
        preview_df = df.head(10)
        try:
            markdown_table = preview_df.to_markdown(index=False)
            if markdown_table:
                result += markdown_table + "\n\n"
            else:
                result += "Unable to display CSV data.\n\n"
        except Exception as e:
            logging.error(f"Markdown table conversion error: {e}")
            result += "Displaying data as text:\n\n" + str(preview_df) + "\n\n"

        num_cols = df.select_dtypes(include=['number']).columns
        if len(num_cols) > 0:
            result += "### Basic Statistical Information\n\n"
            try:
                stats_df = df[num_cols].describe().round(2)
                stats_markdown = stats_df.to_markdown()
                if stats_markdown:
                    result += stats_markdown + "\n\n"
                else:
                    result += "Unable to display statistical information.\n\n"
            except Exception as e:
                logging.error(f"Statistical info conversion error: {e}")
                result += "Unable to generate statistical information.\n\n"

        return result
    except Exception as e:
        logging.error(f"CSV file processing error: {str(e)}")
        return f"Error processing CSV file: {str(e)}"

def process_pdf_file(file):
    try:
        file_bytes = file.read()
        file.seek(0)

        pdf_file = io.BytesIO(file_bytes)
        reader = PyPDF2.PdfReader(pdf_file, strict=False)

        result = f"## PDF File: {file.name}\n\n- Total pages: {len(reader.pages)}\n\n"

        max_pages = min(5, len(reader.pages))
        all_text = ""

        for i in range(max_pages):
            try:
                page = reader.pages[i]
                page_text = page.extract_text()
                current_page_text = f"### Page {i+1}\n\n"
                if page_text and len(page_text.strip()) > 0:
                    if len(page_text) > 1500:
                        current_page_text += page_text[:1500] + "...(truncated)...\n\n"
                    else:
                        current_page_text += page_text + "\n\n"
                else:
                    current_page_text += "(No text could be extracted)\n\n"

                all_text += current_page_text

                if len(all_text) > 8000:
                    all_text += "...(truncating remaining pages)...\n\n"
                    break

            except Exception as page_err:
                logging.error(f"Error processing PDF page {i+1}: {str(page_err)}")
                all_text += f"### Page {i+1}\n\n(Error extracting content: {str(page_err)})\n\n"

        if len(reader.pages) > max_pages:
            all_text += f"\nNote: Only the first {max_pages} pages are shown.\n\n"

        result += "### PDF Content\n\n" + all_text
        return result

    except Exception as e:
        logging.error(f"PDF file processing error: {str(e)}")
        return f"## PDF File: {file.name}\n\nError: {str(e)}\n\nCannot process."

def process_uploaded_files(files):
    if not files:
        return None

    result = "# Uploaded File Contents\n\nBelow is the content from the files provided by the user.\n\n"
    for file in files:
        try:
            ext = file.name.split('.')[-1].lower()
            if ext == 'txt':
                result += process_text_file(file) + "\n\n---\n\n"
            elif ext == 'csv':
                result += process_csv_file(file) + "\n\n---\n\n"
            elif ext == 'pdf':
                result += process_pdf_file(file) + "\n\n---\n\n"
            else:
                result += f"### Unsupported File: {file.name}\n\n---\n\n"
        except Exception as e:
            logging.error(f"File processing error {file.name}: {e}")
            result += f"### File processing error: {file.name}\n\nError: {e}\n\n---\n\n"

    return result

# ──────────────────────────────── Image & Utility ─────────────────────────

def load_and_show_image(img_url: str, caption: str = "Image"):
    """
    1) User-Agentλ₯Ό λ„£μ–΄ hotlink λ°©μ–΄ 우회
    2) λ‹€μš΄λ‘œλ“œ ν›„ ν‘œμ‹œ
    """
    headers = {
        "User-Agent": ("Mozilla/5.0 (Windows NT 10.0; Win64; x64)"
                       " AppleWebKit/537.36 (KHTML, like Gecko)"
                       " Chrome/98.0.4758.102 Safari/537.36")
    }
    try:
        response = requests.get(img_url, headers=headers, timeout=10)
        response.raise_for_status()
        image = Image.open(BytesIO(response.content))
        st.image(image, caption=caption, use_container_width=True)
    except Exception as e:
        st.warning(f"이미지 λ‘œλ”© μ‹€νŒ¨: {e}")

def generate_image(prompt, w=768, h=768, g=3.5, steps=30, seed=3):
    if not prompt:
        return None, "Insufficient prompt"
    try:
        res = Client(IMAGE_API_URL).predict(
            prompt=prompt, width=w, height=h, guidance=g,
            inference_steps=steps, seed=seed,
            do_img2img=False, init_image=None,
            image2image_strength=0.8, resize_img=True,
            api_name="/generate_image"
        )
        return res[0], f"Seed: {res[1]}"
    except Exception as e:
        logging.error(e)
        return None, str(e)

def extract_image_prompt(response_text: str, topic: str):
    client = get_openai_client()
    try:
        response = client.chat.completions.create(
            model="gpt-4.1-mini",
            messages=[
                {"role": "system", "content": "Generate a single-line English image prompt from the following text. Return only the prompt text, nothing else."},
                {"role": "user", "content": f"Topic: {topic}\n\n---\n{response_text}\n\n---"}
            ],
            temperature=1,
            max_tokens=80,
            top_p=1
        )
        return response.choices[0].message.content.strip()
    except Exception as e:
        logging.error(f"OpenAI image prompt generation error: {e}")
        return f"A professional photo related to {topic}, high quality"

def md_to_html(md: str, title="Perplexity Clone Response"):
    return f"<!DOCTYPE html><html><head><title>{title}</title><meta charset='utf-8'></head><body>{markdown.markdown(md)}</body></html>"

def keywords(text: str, top=5):
    cleaned = re.sub(r"[^κ°€-힣a-zA-Z0-9\s]", "", text)
    return " ".join(cleaned.split()[:top])

# ──────────────────────────────── Streamlit UI ────────────────────────────
def perplexity_app():
    st.title("Perplexity Clone AI Assistant")

    if "ai_model" not in st.session_state:
        st.session_state.ai_model = "gpt-4.1-mini"
    if "messages" not in st.session_state:
        st.session_state.messages = []
    if "auto_save" not in st.session_state:
        st.session_state.auto_save = True
    if "generate_image" not in st.session_state:
        st.session_state.generate_image = False
    if "web_search_enabled" not in st.session_state:
        st.session_state.web_search_enabled = True
    if "search_mode" not in st.session_state:
        st.session_state.search_mode = "comprehensive"
    if "response_style" not in st.session_state:
        st.session_state.response_style = "professional"

    sb = st.sidebar
    sb.title("Search Settings")
    
    sb.subheader("Response Configuration")
    sb.selectbox(
        "Search Mode", 
        options=list(SEARCH_MODES.keys()), 
        format_func=lambda x: SEARCH_MODES[x],
        key="search_mode"
    )
    
    sb.selectbox(
        "Response Style",
        options=list(RESPONSE_STYLES.keys()),
        format_func=lambda x: RESPONSE_STYLES[x],
        key="response_style"
    )
    
    # Example queries
    sb.subheader("Example Queries")
    c1, c2, c3 = sb.columns(3)
    if c1.button("Quantum Computing", key="ex1"):
        process_example(EXAMPLE_QUERIES["example1"])
    if c2.button("Climate Change", key="ex2"):
        process_example(EXAMPLE_QUERIES["example2"])
    if c3.button("AI Economics", key="ex3"):
        process_example(EXAMPLE_QUERIES["example3"])
    
    sb.subheader("Other Settings")
    sb.toggle("Auto Save", key="auto_save")
    sb.toggle("Auto Image Generation", key="generate_image")
    
    web_search_enabled = sb.toggle("Use Web Search", value=st.session_state.web_search_enabled)
    st.session_state.web_search_enabled = web_search_enabled
    
    if web_search_enabled:
        st.sidebar.info("βœ… Web search results will be integrated into the response.")

    # Download the latest response
    latest_response = next(
        (m["content"] for m in reversed(st.session_state.messages) 
         if m["role"] == "assistant" and m["content"].strip()), 
        None
    )
    if latest_response:
        title_match = re.search(r"# (.*?)(\n|$)", latest_response)
        if title_match:
            title = title_match.group(1).strip()
        else:
            first_line = latest_response.split('\n', 1)[0].strip()
            title = first_line[:40] + "..." if len(first_line) > 40 else first_line
        
        sb.subheader("Download Latest Response")
        d1, d2 = sb.columns(2)
        d1.download_button("Download as Markdown", latest_response, 
                           file_name=f"{title}.md", mime="text/markdown")
        d2.download_button("Download as HTML", md_to_html(latest_response, title),
                           file_name=f"{title}.html", mime="text/html")

    # JSON conversation record upload
    up = sb.file_uploader("Load Conversation History (.json)", type=["json"], key="json_uploader")
    if up:
        try:
            st.session_state.messages = json.load(up)
            sb.success("Conversation history loaded successfully")
        except Exception as e:
            sb.error(f"Failed to load: {e}")

    # JSON conversation record download
    if sb.button("Download Conversation as JSON"):
        sb.download_button(
            "Save",
            data=json.dumps(st.session_state.messages, ensure_ascii=False, indent=2),
            file_name="conversation_history.json",
            mime="application/json"
        )

    # File Upload
    st.subheader("Upload Files")
    uploaded_files = st.file_uploader(
        "Upload files to be used as reference (txt, csv, pdf)",
        type=["txt", "csv", "pdf"],
        accept_multiple_files=True,
        key="file_uploader"
    )
    
    if uploaded_files:
        file_count = len(uploaded_files)
        st.success(f"{file_count} files uploaded. They will be used as sources for your query.")
        
        with st.expander("Preview Uploaded Files", expanded=False):
            for idx, file in enumerate(uploaded_files):
                st.write(f"**File Name:** {file.name}")
                ext = file.name.split('.')[-1].lower()
                
                if ext == 'txt':
                    preview = file.read(1000).decode('utf-8', errors='ignore')
                    file.seek(0)
                    st.text_area(
                        f"Preview of {file.name}",
                        preview + ("..." if len(preview) >= 1000 else ""),
                        height=150
                    )
                elif ext == 'csv':
                    try:
                        df = pd.read_csv(file)
                        file.seek(0)
                        st.write("CSV Preview (up to 5 rows)")
                        st.dataframe(df.head(5))
                    except Exception as e:
                        st.error(f"CSV preview failed: {e}")
                elif ext == 'pdf':
                    try:
                        file_bytes = file.read()
                        file.seek(0)
                        
                        pdf_file = io.BytesIO(file_bytes)
                        reader = PyPDF2.PdfReader(pdf_file, strict=False)
                        
                        pc = len(reader.pages)
                        st.write(f"PDF File: {pc} pages")
                        
                        if pc > 0:
                            try:
                                page_text = reader.pages[0].extract_text()
                                preview = page_text[:500] if page_text else "(No text extracted)"
                                st.text_area("Preview of the first page", preview + "...", height=150)
                            except:
                                st.warning("Failed to extract text from the first page")
                    except Exception as e:
                        st.error(f"PDF preview failed: {e}")

                if idx < file_count - 1:
                    st.divider()

    # Display existing messages
    for m in st.session_state.messages:
        with st.chat_message(m["role"]):
            st.markdown(m["content"], unsafe_allow_html=True)
            
            # Images
            if "images" in m and m["images"]:
                st.subheader("Related Images")
                cols = st.columns(min(3, len(m["images"])))
                for i, img_data in enumerate(m["images"]):
                    col_idx = i % len(cols)
                    with cols[col_idx]:
                        try:
                            img_url = img_data.get('url', '')
                            caption = img_data.get('title', 'Related image')
                            if img_url:
                                load_and_show_image(img_url, caption=caption)
                            if img_data.get('source'):
                                st.markdown(f"[Source]({img_data['source']})")
                        except Exception as img_err:
                            st.warning(f"Could not display image: {img_err}")
            
            # Videos
            if "videos" in m and m["videos"]:
                st.subheader("Related Videos")
                for video in m["videos"]:
                    video_title = video.get('title', 'Related video')
                    video_url   = video.get('url', '')
                    thumbnail   = video.get('thumbnail', '')
                    
                    if thumbnail:
                        col1, col2 = st.columns([1, 3])
                        with col1:
                            try:
                                load_and_show_image(thumbnail, caption="Video Thumbnail")
                            except:
                                st.write("🎬")
                        with col2:
                            st.markdown(f"**[{video_title}]({video_url})**")
                            st.write(f"Source: {video.get('source', 'Unknown')}")
                    else:
                        st.markdown(f"🎬 **[{video_title}]({video_url})**")
                        st.write(f"Source: {video.get('source', 'Unknown')}")

    # User input
    query = st.chat_input("Enter your query or question here.")
    if query:
        process_input(query, uploaded_files)

    sb.markdown("---")
    sb.markdown("Created by [https://ginigen.com](https://ginigen.com) | [YouTube Channel](https://www.youtube.com/@ginipickaistudio)")

def process_example(topic):
    process_input(topic, [])

def process_input(query: str, uploaded_files):
    if not any(m["role"] == "user" and m["content"] == query for m in st.session_state.messages):
        st.session_state.messages.append({"role": "user", "content": query})

    with st.chat_message("user"):
        st.markdown(query)
    
    with st.chat_message("assistant"):
        placeholder = st.empty()
        message_placeholder = st.empty()
        full_response = ""

        use_web_search = st.session_state.web_search_enabled
        has_uploaded_files = bool(uploaded_files) and len(uploaded_files) > 0
        
        try:
            status = st.status("Preparing to answer your query...")
            status.update(label="Initializing client...")
            
            client = get_openai_client()
            
            search_content = None
            image_results = []
            video_results = []
            news_results = []
            
            if use_web_search:
                status.update(label="Performing web search...")
                with st.spinner("Searching the web..."):
                    search_content = do_web_search(keywords(query, top=5))
                
                try:
                    status.update(label="Finding images and videos...")
                    image_results = brave_image_search(query, 5)
                    video_results = brave_video_search(query, 2)
                    news_results  = brave_news_search(query, 3)
                except Exception as search_err:
                    logging.error(f"Media search error: {search_err}")
            
            file_content = None
            if has_uploaded_files:
                status.update(label="Processing uploaded files...")
                with st.spinner("Analyzing files..."):
                    file_content = process_uploaded_files(uploaded_files)
            
            valid_images = []
            for img in image_results:
                url = img.get('image_url')
                if url and url.startswith('http'):
                    valid_images.append({
                        'url': url,
                        'title': img.get('title', f"Related to: {query}"),
                        'source': img.get('source_url', '')
                    })

            valid_videos = []
            for vid in video_results:
                url = vid.get('video_url')
                if url and url.startswith('http'):
                    valid_videos.append({
                        'url': url,
                        'title': vid.get('title', 'Video'),
                        'thumbnail': vid.get('thumbnail_url', ''),
                        'source': vid.get('source', 'Video source')
                    })
            
            status.update(label="Preparing comprehensive answer...")
            sys_prompt = get_system_prompt(
                mode=st.session_state.search_mode,
                style=st.session_state.response_style,
                include_search_results=use_web_search,
                include_uploaded_files=has_uploaded_files
            )

            api_messages = [
                {"role": "system", "content": sys_prompt}
            ]
            
            user_content = query
            if search_content:
                user_content += "\n\n" + search_content
            if file_content:
                user_content += "\n\n" + file_content
            
            if valid_images:
                user_content += "\n\n# Available Images\n"
                for i, img in enumerate(valid_images):
                    user_content += f"\n{i+1}. ![{img['title']}]({img['url']})\n"
                    if img['source']:
                        user_content += f"   Source: {img['source']}\n"
            
            if valid_videos:
                user_content += "\n\n# Available Videos\n"
                for i, vid in enumerate(valid_videos):
                    user_content += f"\n{i+1}. **{vid['title']}** - [{vid['source']}]({vid['url']})\n"
            
            api_messages.append({"role": "user", "content": user_content})
            
            try:
                stream = client.chat.completions.create(
                    model="gpt-4.1-mini",
                    messages=api_messages,
                    temperature=1,
                    max_tokens=MAX_TOKENS,
                    top_p=1,
                    stream=True
                )
                
                for chunk in stream:
                    if chunk.choices and len(chunk.choices) > 0 and chunk.choices[0].delta.content is not None:
                        content_delta = chunk.choices[0].delta.content
                        full_response += content_delta
                        message_placeholder.markdown(full_response + "β–Œ", unsafe_allow_html=True)
                
                message_placeholder.markdown(full_response, unsafe_allow_html=True)
                
                if valid_images:
                    st.subheader("Related Images")
                    image_cols = st.columns(min(3, len(valid_images)))
                    
                    for i, img_data in enumerate(valid_images):
                        col_idx = i % len(image_cols)
                        try:
                            with image_cols[col_idx]:
                                img_url = img_data['url']
                                caption = img_data['title']
                                load_and_show_image(img_url, caption=caption)
                                if img_data.get('source'):
                                    st.markdown(f"[Source]({img_data['source']})")
                        except Exception as img_err:
                            logging.warning(f"Error displaying image: {img_err}")
                
                if valid_videos:
                    st.subheader("Related Videos")
                    for video in valid_videos:
                        video_title = video.get('title', 'Related video')
                        video_url   = video.get('url', '')
                        thumbnail   = video.get('thumbnail', '')
                        
                        if thumbnail:
                            try:
                                col1, col2 = st.columns([1, 3])
                                with col1:
                                    try:
                                        load_and_show_image(thumbnail, caption="Video Thumbnail")
                                    except:
                                        st.write("🎬")
                                with col2:
                                    st.markdown(f"**[{video_title}]({video_url})**")
                                    st.write(f"Source: {video.get('source', 'Unknown')}")
                            except Exception as vid_err:
                                st.markdown(f"🎬 **[{video_title}]({video_url})**")
                                st.write(f"Source: {video.get('source', 'Unknown')}")
                        else:
                            st.markdown(f"🎬 **[{video_title}]({video_url})**")
                            st.write(f"Source: {video.get('source', 'Unknown')}")

                status.update(label="Response completed!", state="complete")
                
                st.session_state.messages.append({
                    "role": "assistant", 
                    "content": full_response,
                    "images": valid_images,
                    "videos": valid_videos
                })
                
            except Exception as api_error:
                error_message = str(api_error)
                logging.error(f"API error: {error_message}")
                status.update(label=f"Error: {error_message}", state="error")
                raise Exception(f"Response generation error: {error_message}")
            
            if st.session_state.generate_image and full_response:
                with st.spinner("Generating custom image..."):
                    try:
                        ip = extract_image_prompt(full_response, query)
                        img, cap = generate_image(ip)
                        if img:
                            st.subheader("AI-Generated Image")
                            st.image(img, caption=cap, use_container_width=True)
                    except Exception as img_error:
                        logging.error(f"Image generation error: {str(img_error)}")
                        st.warning("Custom image generation failed.")

            if full_response:
                st.subheader("Download This Response")
                c1, c2 = st.columns(2)
                c1.download_button(
                    "Markdown", 
                    data=full_response, 
                    file_name=f"{query[:30]}.md",
                    mime="text/markdown"
                )
                c2.download_button(
                    "HTML",
                    data=md_to_html(full_response, query[:30]),
                    file_name=f"{query[:30]}.html",
                    mime="text/html"
                )

            if st.session_state.auto_save and st.session_state.messages:
                try:
                    fn = f"conversation_history_auto_{datetime.now():%Y%m%d_%H%M%S}.json"
                    with open(fn, "w", encoding="utf-8") as fp:
                        json.dump(st.session_state.messages, fp, ensure_ascii=False, indent=2)
                except Exception as e:
                    logging.error(f"Auto-save failed: {e}")

        except Exception as e:
            error_message = str(e)
            placeholder.error(f"An error occurred: {error_message}")
            logging.error(f"Process input error: {error_message}")
            ans = f"An error occurred while processing your request: {error_message}"
            st.session_state.messages.append({"role": "assistant", "content": ans})

# ──────────────────────────────── main ────────────────────────────────────
def main():
    st.write("==== Application Startup at", datetime.now().strftime("%Y-%m-%d %H:%M:%S"), "=====")
    perplexity_app()

if __name__ == "__main__":
    main()