File size: 43,566 Bytes
a136f76 44bda5c a136f76 44bda5c a136f76 e175e31 a136f76 e175e31 a136f76 44bda5c a136f76 e175e31 a136f76 e175e31 a136f76 e175e31 a136f76 e175e31 a136f76 e175e31 a136f76 e175e31 a136f76 e175e31 a136f76 e175e31 a136f76 e175e31 a136f76 e175e31 a136f76 44bda5c a136f76 e175e31 a136f76 e175e31 a136f76 e175e31 a136f76 e175e31 a136f76 e175e31 a136f76 e175e31 a136f76 e175e31 a136f76 e175e31 a136f76 e175e31 a136f76 e175e31 a136f76 e175e31 a136f76 e175e31 a136f76 e175e31 a136f76 e175e31 a136f76 e175e31 a136f76 e175e31 a136f76 e175e31 a136f76 e175e31 a136f76 e175e31 a136f76 e175e31 a136f76 44bda5c a136f76 44bda5c a136f76 44bda5c a136f76 44bda5c a136f76 44bda5c a136f76 44bda5c a136f76 44bda5c a136f76 e175e31 44bda5c a136f76 e175e31 a136f76 e175e31 a136f76 44bda5c a136f76 e175e31 a136f76 44bda5c a136f76 e175e31 a136f76 44bda5c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 |
import os, json, re, logging, requests, markdown, time, io
from datetime import datetime
import random
import base64
from io import BytesIO
from PIL import Image
import streamlit as st
from openai import OpenAI # OpenAI λΌμ΄λΈλ¬λ¦¬
from gradio_client import Client
import pandas as pd
import PyPDF2 # For handling PDF files
# ββββββββββββββββββββββββββββββββ Environment Variables / Constants βββββββββββββββββββββββββ
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY", "")
BRAVE_KEY = os.getenv("SERPHOUSE_API_KEY", "") # Keep this name
BRAVE_ENDPOINT = "https://api.search.brave.com/res/v1/web/search"
BRAVE_IMAGE_ENDPOINT = "https://api.search.brave.com/res/v1/images/search"
BRAVE_VIDEO_ENDPOINT = "https://api.search.brave.com/res/v1/videos/search"
BRAVE_NEWS_ENDPOINT = "https://api.search.brave.com/res/v1/news/search"
IMAGE_API_URL = "http://211.233.58.201:7896"
MAX_TOKENS = 7999
# Brave Search modes and style definitions (in English)
SEARCH_MODES = {
"comprehensive": "Comprehensive answer with multiple sources",
"academic": "Academic and research-focused results",
"news": "Latest news and current events",
"technical": "Technical and specialized information",
"educational": "Educational and learning resources"
}
RESPONSE_STYLES = {
"professional": "Professional and formal tone",
"casual": "Friendly and conversational tone",
"simple": "Simple and easy to understand",
"detailed": "Detailed and thorough explanations"
}
# Example search queries
EXAMPLE_QUERIES = {
"example1": "What are the latest developments in quantum computing?",
"example2": "How does climate change affect biodiversity in tropical rainforests?",
"example3": "What are the economic implications of artificial intelligence in the job market?"
}
# ββββββββββββββββββββββββββββββββ Logging ββββββββββββββββββββββββββββββββ
logging.basicConfig(level=logging.INFO,
format="%(asctime)s - %(levelname)s - %(message)s")
# ββββββββββββββββββββββββββββββββ OpenAI Client ββββββββββββββββββββββββββ
@st.cache_resource
def get_openai_client():
"""Create an OpenAI client with timeout and retry settings."""
if not OPENAI_API_KEY:
raise RuntimeError("β οΈ OPENAI_API_KEY νκ²½ λ³μκ° μ€μ λμ§ μμμ΅λλ€.")
return OpenAI(
api_key=OPENAI_API_KEY,
timeout=60.0,
max_retries=3
)
# ββββββββββββββββββββββββββββββββ System Prompt βββββββββββββββββββββββββ
def get_system_prompt(mode="comprehensive", style="professional", include_search_results=True, include_uploaded_files=False) -> str:
"""
Generate a system prompt for the 'Perplexity Clone' interface based on:
- The selected search mode and style
- Guidelines for using web search results and uploaded files
"""
comprehensive_prompt = """
You are an advanced AI assistant that provides comprehensive answers with multiple sources, similar to Perplexity.
Your task is to:
1. Thoroughly analyze the user's query
2. Provide a clear, well-structured answer integrating information from multiple sources
3. Include relevant images, videos, and links in your response
4. Format your answer with proper headings, bullet points, and sections
5. Cite sources inline and provide a references section at the end
Important guidelines:
- Organize information logically with clear section headings
- Use bullet points and numbered lists for clarity
- Include specific, factual information whenever possible
- Provide balanced perspectives on controversial topics
- Display relevant statistics, data, or quotes when appropriate
- Format your response using markdown for readability
"""
mode_prompts = {
"academic": """
Your focus is on providing academic and research-focused responses:
- Prioritize peer-reviewed research and academic sources
- Include citations in a formal academic format
- Discuss methodologies and research limitations where relevant
- Present different scholarly perspectives on the topic
- Use precise, technical language appropriate for an academic audience
""",
"news": """
Your focus is on providing the latest news and current events:
- Prioritize recent news articles and current information
- Include publication dates for all news sources
- Present multiple perspectives from different news outlets
- Distinguish between facts and opinions/editorial content
- Update information with the most recent developments
""",
"technical": """
Your focus is on providing technical and specialized information:
- Use precise technical terminology appropriate to the field
- Include code snippets, formulas, or technical diagrams where relevant
- Break down complex concepts into step-by-step explanations
- Reference technical documentation, standards, and best practices
- Consider different technical approaches or methodologies
""",
"educational": """
Your focus is on providing educational and learning resources:
- Structure information in a learning-friendly progression
- Include examples, analogies, and visual explanations
- Highlight key concepts and definitions
- Suggest further learning resources at different difficulty levels
- Present information that's accessible to learners at various levels
"""
}
style_guides = {
"professional": "Use a professional, authoritative voice. Clearly explain technical terms and present data systematically.",
"casual": "Use a relaxed, conversational style with a friendly tone. Include relatable examples and occasionally use informal expressions.",
"simple": "Use straightforward language and avoid jargon. Keep sentences and paragraphs short. Explain concepts as if to someone with no background in the subject.",
"detailed": "Provide thorough explanations with comprehensive background information. Explore nuances and edge cases. Present multiple perspectives and detailed analysis."
}
search_guide = """
Guidelines for Using Search Results:
- Include source links directly in your response using markdown: [Source Name](URL)
- For each major claim or piece of information, indicate its source
- If sources conflict, explain the different perspectives and their reliability
- Include relevant images by writing: 
- Include relevant video links when appropriate by writing: [Video: Title](video_url)
- Format search information into a cohesive, well-structured response
- Include a "References" section at the end listing all major sources with links
"""
upload_guide = """
Guidelines for Using Uploaded Files:
- Treat the uploaded files as primary sources for your response
- Extract and highlight key information from files that directly addresses the query
- Quote relevant passages and cite the specific file
- For numerical data in CSV files, consider creating summary statements
- For PDF content, reference specific sections or pages
- Integrate file information seamlessly with web search results
- When information conflicts, prioritize file content over general web results
"""
# Base prompt
if mode == "comprehensive":
final_prompt = comprehensive_prompt
else:
final_prompt = comprehensive_prompt + "\n" + mode_prompts.get(mode, "")
# Style
if style in style_guides:
final_prompt += f"\n\nTone and Style: {style_guides[style]}"
if include_search_results:
final_prompt += f"\n\n{search_guide}"
if include_uploaded_files:
final_prompt += f"\n\n{upload_guide}"
final_prompt += """
\n\nAdditional Formatting Requirements:
- Use markdown headings (## and ###) to organize your response
- Use bold text (**text**) for emphasis on important points
- Include a "Related Questions" section at the end with 3-5 follow-up questions
- Format your response with proper spacing and paragraph breaks
- Make all links clickable by using proper markdown format: [text](url)
"""
return final_prompt
# ββββββββββββββββββββββββββββββββ Brave Search API ββββββββββββββββββββββββ
@st.cache_data(ttl=3600)
def brave_search(query: str, count: int = 20):
if not BRAVE_KEY:
raise RuntimeError("β οΈ SERPHOUSE_API_KEY (Brave API Key) environment variable is empty.")
headers = {"Accept": "application/json", "Accept-Encoding": "gzip", "X-Subscription-Token": BRAVE_KEY}
params = {"q": query, "count": str(count)}
for attempt in range(3):
try:
r = requests.get(BRAVE_ENDPOINT, headers=headers, params=params, timeout=15)
r.raise_for_status()
data = r.json()
logging.info(f"Brave search result data structure: {list(data.keys())}")
raw = data.get("web", {}).get("results") or data.get("results", [])
if not raw:
logging.warning(f"No Brave search results found. Response: {data}")
raise ValueError("No search results found.")
arts = []
for i, res in enumerate(raw[:count], 1):
url = res.get("url", res.get("link", ""))
host = re.sub(r"https?://(www\.)?", "", url).split("/")[0]
arts.append({
"index": i,
"title": res.get("title", "No title"),
"link": url,
"snippet": res.get("description", res.get("text", "No snippet")),
"displayed_link": host
})
logging.info(f"Brave search success: {len(arts)} results")
return arts
except Exception as e:
logging.error(f"Brave search failure (attempt {attempt+1}/3): {e}")
if attempt < 2:
# μ¬κΈ°μ λκΈ° μκ° λλ¦Ό (2μ΄ β 5μ΄)
time.sleep(5)
return []
@st.cache_data(ttl=3600)
def brave_image_search(query: str, count: int = 10):
if not BRAVE_KEY:
raise RuntimeError("β οΈ SERPHOUSE_API_KEY (Brave API Key) environment variable is empty.")
headers = {"Accept": "application/json","Accept-Encoding": "gzip","X-Subscription-Token": BRAVE_KEY}
params = {"q": query, "count": str(count),"search_lang": "en","country": "us","spellcheck": "1"}
for attempt in range(3):
try:
r = requests.get(BRAVE_IMAGE_ENDPOINT, headers=headers, params=params, timeout=15)
r.raise_for_status()
data = r.json()
results = []
for i, img in enumerate(data.get("results", [])[:count], 1):
results.append({
"index": i,
"title": img.get("title", "Image"),
"image_url": img.get("image", {}).get("url", ""),
"source_url": img.get("source", ""),
"width": img.get("image", {}).get("width", 0),
"height": img.get("image", {}).get("height", 0)
})
logging.info(f"Brave image search success: {len(results)} results")
return results
except Exception as e:
logging.error(f"Brave image search failure (attempt {attempt+1}/3): {e}")
if attempt < 2:
time.sleep(5)
return []
@st.cache_data(ttl=3600)
def brave_video_search(query: str, count: int = 5):
if not BRAVE_KEY:
raise RuntimeError("β οΈ SERPHOUSE_API_KEY (Brave API Key) environment variable is empty.")
headers = {"Accept": "application/json","Accept-Encoding": "gzip","X-Subscription-Token": BRAVE_KEY}
params = {"q": query, "count": str(count)}
for attempt in range(3):
try:
r = requests.get(BRAVE_VIDEO_ENDPOINT, headers=headers, params=params, timeout=15)
r.raise_for_status()
data = r.json()
results = []
for i, vid in enumerate(data.get("results", [])[:count], 1):
results.append({
"index": i,
"title": vid.get("title", "Video"),
"video_url": vid.get("url", ""),
"thumbnail_url": vid.get("thumbnail", {}).get("src", ""),
"source": vid.get("provider", {}).get("name", "Unknown source")
})
logging.info(f"Brave video search success: {len(results)} results")
return results
except Exception as e:
logging.error(f"Brave video search failure (attempt {attempt+1}/3): {e}")
if attempt < 2:
time.sleep(5)
return []
@st.cache_data(ttl=3600)
def brave_news_search(query: str, count: int = 5):
if not BRAVE_KEY:
raise RuntimeError("β οΈ SERPHOUSE_API_KEY (Brave API Key) environment variable is empty.")
headers = {"Accept": "application/json","Accept-Encoding": "gzip","X-Subscription-Token": BRAVE_KEY}
params = {"q": query, "count": str(count)}
for attempt in range(3):
try:
r = requests.get(BRAVE_NEWS_ENDPOINT, headers=headers, params=params, timeout=15)
r.raise_for_status()
data = r.json()
results = []
for i, news in enumerate(data.get("results", [])[:count], 1):
results.append({
"index": i,
"title": news.get("title", "News article"),
"url": news.get("url", ""),
"description": news.get("description", ""),
"source": news.get("source", "Unknown source"),
"date": news.get("age", "Unknown date")
})
logging.info(f"Brave news search success: {len(results)} results")
return results
except Exception as e:
logging.error(f"Brave news search failure (attempt {attempt+1}/3): {e}")
if attempt < 2:
time.sleep(5)
return []
def mock_results(query: str) -> str:
ts = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
return (f"# Fallback Search Content (Generated: {ts})\n\n"
f"The search API request failed or returned no results for '{query}'. "
f"Please generate a response based on any pre-existing knowledge.\n\n"
f"Consider these points:\n\n"
f"- Basic concepts and importance of {query}\n"
f"- Commonly known related statistics or trends\n"
f"- Typical expert opinions on this subject\n"
f"- Questions that readers might have\n\n"
f"Note: This is fallback guidance, not real-time data.\n\n")
def do_web_search(query: str) -> str:
try:
arts = brave_search(query, 20)
if not arts:
logging.warning("No search results, using fallback content")
return mock_results(query)
images = brave_image_search(query, 5)
videos = brave_video_search(query, 2)
news = brave_news_search(query, 3)
result = "# Web Search Results\nUse these results to provide a comprehensive answer with multiple sources.\n\n"
result += "## Web Results\n\n"
for a in arts[:10]:
result += f"### Result {a['index']}: {a['title']}\n\n{a['snippet']}\n\n"
result += f"**Source**: [{a['displayed_link']}]({a['link']})\n\n---\n"
if images:
result += "## Image Results\n\n"
for img in images:
if img.get('image_url'):
result += f"![{img['title']}]({img['image_url']})\n\n"
result += f"**Source**: [{img.get('source_url', 'Image source')}]({img.get('source_url', '#')})\n\n"
if videos:
result += "## Video Results\n\n"
for vid in videos:
result += f"### {vid['title']}\n\n"
if vid.get('thumbnail_url'):
result += f"\n\n"
result += f"**Watch**: [{vid['source']}]({vid['video_url']})\n\n"
if news:
result += "## News Results\n\n"
for n in news:
result += f"### {n['title']}\n\n{n['description']}\n\n"
result += f"**Source**: [{n['source']}]({n['url']}) - {n['date']}\n\n---\n"
return result
except Exception as e:
logging.error(f"Web search process failed: {str(e)}")
return mock_results(query)
# ββββββββββββββββββββββββββββββββ File Upload Handling βββββββββββββββββββββ
def process_text_file(file):
try:
content = file.read()
file.seek(0)
text = content.decode('utf-8', errors='ignore')
if len(text) > 10000:
text = text[:9700] + "...(truncated)..."
result = f"## Text File: {file.name}\n\n" + text
return result
except Exception as e:
logging.error(f"Error processing text file: {str(e)}")
return f"Error processing text file: {str(e)}"
def process_csv_file(file):
try:
content = file.read()
file.seek(0)
df = pd.read_csv(io.BytesIO(content))
result = f"## CSV File: {file.name}\n\n"
result += f"- Rows: {len(df)}\n"
result += f"- Columns: {len(df.columns)}\n"
result += f"- Column Names: {', '.join(df.columns.tolist())}\n\n"
result += "### Data Preview\n\n"
preview_df = df.head(10)
try:
markdown_table = preview_df.to_markdown(index=False)
if markdown_table:
result += markdown_table + "\n\n"
else:
result += "Unable to display CSV data.\n\n"
except Exception as e:
logging.error(f"Markdown table conversion error: {e}")
result += "Displaying data as text:\n\n" + str(preview_df) + "\n\n"
num_cols = df.select_dtypes(include=['number']).columns
if len(num_cols) > 0:
result += "### Basic Statistical Information\n\n"
try:
stats_df = df[num_cols].describe().round(2)
stats_markdown = stats_df.to_markdown()
if stats_markdown:
result += stats_markdown + "\n\n"
else:
result += "Unable to display statistical information.\n\n"
except Exception as e:
logging.error(f"Statistical info conversion error: {e}")
result += "Unable to generate statistical information.\n\n"
return result
except Exception as e:
logging.error(f"CSV file processing error: {str(e)}")
return f"Error processing CSV file: {str(e)}"
def process_pdf_file(file):
try:
file_bytes = file.read()
file.seek(0)
pdf_file = io.BytesIO(file_bytes)
reader = PyPDF2.PdfReader(pdf_file, strict=False)
result = f"## PDF File: {file.name}\n\n- Total pages: {len(reader.pages)}\n\n"
max_pages = min(5, len(reader.pages))
all_text = ""
for i in range(max_pages):
try:
page = reader.pages[i]
page_text = page.extract_text()
current_page_text = f"### Page {i+1}\n\n"
if page_text and len(page_text.strip()) > 0:
if len(page_text) > 1500:
current_page_text += page_text[:1500] + "...(truncated)...\n\n"
else:
current_page_text += page_text + "\n\n"
else:
current_page_text += "(No text could be extracted)\n\n"
all_text += current_page_text
if len(all_text) > 8000:
all_text += "...(truncating remaining pages)...\n\n"
break
except Exception as page_err:
logging.error(f"Error processing PDF page {i+1}: {str(page_err)}")
all_text += f"### Page {i+1}\n\n(Error extracting content: {str(page_err)})\n\n"
if len(reader.pages) > max_pages:
all_text += f"\nNote: Only the first {max_pages} pages are shown.\n\n"
result += "### PDF Content\n\n" + all_text
return result
except Exception as e:
logging.error(f"PDF file processing error: {str(e)}")
return f"## PDF File: {file.name}\n\nError: {str(e)}\n\nCannot process."
def process_uploaded_files(files):
if not files:
return None
result = "# Uploaded File Contents\n\nBelow is the content from the files provided by the user.\n\n"
for file in files:
try:
ext = file.name.split('.')[-1].lower()
if ext == 'txt':
result += process_text_file(file) + "\n\n---\n\n"
elif ext == 'csv':
result += process_csv_file(file) + "\n\n---\n\n"
elif ext == 'pdf':
result += process_pdf_file(file) + "\n\n---\n\n"
else:
result += f"### Unsupported File: {file.name}\n\n---\n\n"
except Exception as e:
logging.error(f"File processing error {file.name}: {e}")
result += f"### File processing error: {file.name}\n\nError: {e}\n\n---\n\n"
return result
# ββββββββββββββββββββββββββββββββ Image & Utility βββββββββββββββββββββββββ
def load_and_show_image(img_url: str, caption: str = "Image"):
"""
1) User-Agentλ₯Ό λ£μ΄ hotlink λ°©μ΄ μ°ν
2) λ€μ΄λ‘λ ν νμ
"""
headers = {
"User-Agent": ("Mozilla/5.0 (Windows NT 10.0; Win64; x64)"
" AppleWebKit/537.36 (KHTML, like Gecko)"
" Chrome/98.0.4758.102 Safari/537.36")
}
try:
response = requests.get(img_url, headers=headers, timeout=10)
response.raise_for_status()
image = Image.open(BytesIO(response.content))
st.image(image, caption=caption, use_container_width=True)
except Exception as e:
st.warning(f"μ΄λ―Έμ§ λ‘λ© μ€ν¨: {e}")
def generate_image(prompt, w=768, h=768, g=3.5, steps=30, seed=3):
if not prompt:
return None, "Insufficient prompt"
try:
res = Client(IMAGE_API_URL).predict(
prompt=prompt, width=w, height=h, guidance=g,
inference_steps=steps, seed=seed,
do_img2img=False, init_image=None,
image2image_strength=0.8, resize_img=True,
api_name="/generate_image"
)
return res[0], f"Seed: {res[1]}"
except Exception as e:
logging.error(e)
return None, str(e)
def extract_image_prompt(response_text: str, topic: str):
client = get_openai_client()
try:
response = client.chat.completions.create(
model="gpt-4.1-mini",
messages=[
{"role": "system", "content": "Generate a single-line English image prompt from the following text. Return only the prompt text, nothing else."},
{"role": "user", "content": f"Topic: {topic}\n\n---\n{response_text}\n\n---"}
],
temperature=1,
max_tokens=80,
top_p=1
)
return response.choices[0].message.content.strip()
except Exception as e:
logging.error(f"OpenAI image prompt generation error: {e}")
return f"A professional photo related to {topic}, high quality"
def md_to_html(md: str, title="Perplexity Clone Response"):
return f"<!DOCTYPE html><html><head><title>{title}</title><meta charset='utf-8'></head><body>{markdown.markdown(md)}</body></html>"
def keywords(text: str, top=5):
cleaned = re.sub(r"[^κ°-ν£a-zA-Z0-9\s]", "", text)
return " ".join(cleaned.split()[:top])
# ββββββββββββββββββββββββββββββββ Streamlit UI ββββββββββββββββββββββββββββ
def perplexity_app():
st.title("Perplexity Clone AI Assistant")
if "ai_model" not in st.session_state:
st.session_state.ai_model = "gpt-4.1-mini"
if "messages" not in st.session_state:
st.session_state.messages = []
if "auto_save" not in st.session_state:
st.session_state.auto_save = True
if "generate_image" not in st.session_state:
st.session_state.generate_image = False
if "web_search_enabled" not in st.session_state:
st.session_state.web_search_enabled = True
if "search_mode" not in st.session_state:
st.session_state.search_mode = "comprehensive"
if "response_style" not in st.session_state:
st.session_state.response_style = "professional"
sb = st.sidebar
sb.title("Search Settings")
sb.subheader("Response Configuration")
sb.selectbox(
"Search Mode",
options=list(SEARCH_MODES.keys()),
format_func=lambda x: SEARCH_MODES[x],
key="search_mode"
)
sb.selectbox(
"Response Style",
options=list(RESPONSE_STYLES.keys()),
format_func=lambda x: RESPONSE_STYLES[x],
key="response_style"
)
# Example queries
sb.subheader("Example Queries")
c1, c2, c3 = sb.columns(3)
if c1.button("Quantum Computing", key="ex1"):
process_example(EXAMPLE_QUERIES["example1"])
if c2.button("Climate Change", key="ex2"):
process_example(EXAMPLE_QUERIES["example2"])
if c3.button("AI Economics", key="ex3"):
process_example(EXAMPLE_QUERIES["example3"])
sb.subheader("Other Settings")
sb.toggle("Auto Save", key="auto_save")
sb.toggle("Auto Image Generation", key="generate_image")
web_search_enabled = sb.toggle("Use Web Search", value=st.session_state.web_search_enabled)
st.session_state.web_search_enabled = web_search_enabled
if web_search_enabled:
st.sidebar.info("β
Web search results will be integrated into the response.")
# Download the latest response
latest_response = next(
(m["content"] for m in reversed(st.session_state.messages)
if m["role"] == "assistant" and m["content"].strip()),
None
)
if latest_response:
title_match = re.search(r"# (.*?)(\n|$)", latest_response)
if title_match:
title = title_match.group(1).strip()
else:
first_line = latest_response.split('\n', 1)[0].strip()
title = first_line[:40] + "..." if len(first_line) > 40 else first_line
sb.subheader("Download Latest Response")
d1, d2 = sb.columns(2)
d1.download_button("Download as Markdown", latest_response,
file_name=f"{title}.md", mime="text/markdown")
d2.download_button("Download as HTML", md_to_html(latest_response, title),
file_name=f"{title}.html", mime="text/html")
# JSON conversation record upload
up = sb.file_uploader("Load Conversation History (.json)", type=["json"], key="json_uploader")
if up:
try:
st.session_state.messages = json.load(up)
sb.success("Conversation history loaded successfully")
except Exception as e:
sb.error(f"Failed to load: {e}")
# JSON conversation record download
if sb.button("Download Conversation as JSON"):
sb.download_button(
"Save",
data=json.dumps(st.session_state.messages, ensure_ascii=False, indent=2),
file_name="conversation_history.json",
mime="application/json"
)
# File Upload
st.subheader("Upload Files")
uploaded_files = st.file_uploader(
"Upload files to be used as reference (txt, csv, pdf)",
type=["txt", "csv", "pdf"],
accept_multiple_files=True,
key="file_uploader"
)
if uploaded_files:
file_count = len(uploaded_files)
st.success(f"{file_count} files uploaded. They will be used as sources for your query.")
with st.expander("Preview Uploaded Files", expanded=False):
for idx, file in enumerate(uploaded_files):
st.write(f"**File Name:** {file.name}")
ext = file.name.split('.')[-1].lower()
if ext == 'txt':
preview = file.read(1000).decode('utf-8', errors='ignore')
file.seek(0)
st.text_area(
f"Preview of {file.name}",
preview + ("..." if len(preview) >= 1000 else ""),
height=150
)
elif ext == 'csv':
try:
df = pd.read_csv(file)
file.seek(0)
st.write("CSV Preview (up to 5 rows)")
st.dataframe(df.head(5))
except Exception as e:
st.error(f"CSV preview failed: {e}")
elif ext == 'pdf':
try:
file_bytes = file.read()
file.seek(0)
pdf_file = io.BytesIO(file_bytes)
reader = PyPDF2.PdfReader(pdf_file, strict=False)
pc = len(reader.pages)
st.write(f"PDF File: {pc} pages")
if pc > 0:
try:
page_text = reader.pages[0].extract_text()
preview = page_text[:500] if page_text else "(No text extracted)"
st.text_area("Preview of the first page", preview + "...", height=150)
except:
st.warning("Failed to extract text from the first page")
except Exception as e:
st.error(f"PDF preview failed: {e}")
if idx < file_count - 1:
st.divider()
# Display existing messages
for m in st.session_state.messages:
with st.chat_message(m["role"]):
st.markdown(m["content"], unsafe_allow_html=True)
# Images
if "images" in m and m["images"]:
st.subheader("Related Images")
cols = st.columns(min(3, len(m["images"])))
for i, img_data in enumerate(m["images"]):
col_idx = i % len(cols)
with cols[col_idx]:
try:
img_url = img_data.get('url', '')
caption = img_data.get('title', 'Related image')
if img_url:
load_and_show_image(img_url, caption=caption)
if img_data.get('source'):
st.markdown(f"[Source]({img_data['source']})")
except Exception as img_err:
st.warning(f"Could not display image: {img_err}")
# Videos
if "videos" in m and m["videos"]:
st.subheader("Related Videos")
for video in m["videos"]:
video_title = video.get('title', 'Related video')
video_url = video.get('url', '')
thumbnail = video.get('thumbnail', '')
if thumbnail:
col1, col2 = st.columns([1, 3])
with col1:
try:
load_and_show_image(thumbnail, caption="Video Thumbnail")
except:
st.write("π¬")
with col2:
st.markdown(f"**[{video_title}]({video_url})**")
st.write(f"Source: {video.get('source', 'Unknown')}")
else:
st.markdown(f"π¬ **[{video_title}]({video_url})**")
st.write(f"Source: {video.get('source', 'Unknown')}")
# User input
query = st.chat_input("Enter your query or question here.")
if query:
process_input(query, uploaded_files)
sb.markdown("---")
sb.markdown("Created by [https://ginigen.com](https://ginigen.com) | [YouTube Channel](https://www.youtube.com/@ginipickaistudio)")
def process_example(topic):
process_input(topic, [])
def process_input(query: str, uploaded_files):
if not any(m["role"] == "user" and m["content"] == query for m in st.session_state.messages):
st.session_state.messages.append({"role": "user", "content": query})
with st.chat_message("user"):
st.markdown(query)
with st.chat_message("assistant"):
placeholder = st.empty()
message_placeholder = st.empty()
full_response = ""
use_web_search = st.session_state.web_search_enabled
has_uploaded_files = bool(uploaded_files) and len(uploaded_files) > 0
try:
status = st.status("Preparing to answer your query...")
status.update(label="Initializing client...")
client = get_openai_client()
search_content = None
image_results = []
video_results = []
news_results = []
if use_web_search:
status.update(label="Performing web search...")
with st.spinner("Searching the web..."):
search_content = do_web_search(keywords(query, top=5))
try:
status.update(label="Finding images and videos...")
image_results = brave_image_search(query, 5)
video_results = brave_video_search(query, 2)
news_results = brave_news_search(query, 3)
except Exception as search_err:
logging.error(f"Media search error: {search_err}")
file_content = None
if has_uploaded_files:
status.update(label="Processing uploaded files...")
with st.spinner("Analyzing files..."):
file_content = process_uploaded_files(uploaded_files)
valid_images = []
for img in image_results:
url = img.get('image_url')
if url and url.startswith('http'):
valid_images.append({
'url': url,
'title': img.get('title', f"Related to: {query}"),
'source': img.get('source_url', '')
})
valid_videos = []
for vid in video_results:
url = vid.get('video_url')
if url and url.startswith('http'):
valid_videos.append({
'url': url,
'title': vid.get('title', 'Video'),
'thumbnail': vid.get('thumbnail_url', ''),
'source': vid.get('source', 'Video source')
})
status.update(label="Preparing comprehensive answer...")
sys_prompt = get_system_prompt(
mode=st.session_state.search_mode,
style=st.session_state.response_style,
include_search_results=use_web_search,
include_uploaded_files=has_uploaded_files
)
api_messages = [
{"role": "system", "content": sys_prompt}
]
user_content = query
if search_content:
user_content += "\n\n" + search_content
if file_content:
user_content += "\n\n" + file_content
if valid_images:
user_content += "\n\n# Available Images\n"
for i, img in enumerate(valid_images):
user_content += f"\n{i+1}. ![{img['title']}]({img['url']})\n"
if img['source']:
user_content += f" Source: {img['source']}\n"
if valid_videos:
user_content += "\n\n# Available Videos\n"
for i, vid in enumerate(valid_videos):
user_content += f"\n{i+1}. **{vid['title']}** - [{vid['source']}]({vid['url']})\n"
api_messages.append({"role": "user", "content": user_content})
try:
stream = client.chat.completions.create(
model="gpt-4.1-mini",
messages=api_messages,
temperature=1,
max_tokens=MAX_TOKENS,
top_p=1,
stream=True
)
for chunk in stream:
if chunk.choices and len(chunk.choices) > 0 and chunk.choices[0].delta.content is not None:
content_delta = chunk.choices[0].delta.content
full_response += content_delta
message_placeholder.markdown(full_response + "β", unsafe_allow_html=True)
message_placeholder.markdown(full_response, unsafe_allow_html=True)
if valid_images:
st.subheader("Related Images")
image_cols = st.columns(min(3, len(valid_images)))
for i, img_data in enumerate(valid_images):
col_idx = i % len(image_cols)
try:
with image_cols[col_idx]:
img_url = img_data['url']
caption = img_data['title']
load_and_show_image(img_url, caption=caption)
if img_data.get('source'):
st.markdown(f"[Source]({img_data['source']})")
except Exception as img_err:
logging.warning(f"Error displaying image: {img_err}")
if valid_videos:
st.subheader("Related Videos")
for video in valid_videos:
video_title = video.get('title', 'Related video')
video_url = video.get('url', '')
thumbnail = video.get('thumbnail', '')
if thumbnail:
try:
col1, col2 = st.columns([1, 3])
with col1:
try:
load_and_show_image(thumbnail, caption="Video Thumbnail")
except:
st.write("π¬")
with col2:
st.markdown(f"**[{video_title}]({video_url})**")
st.write(f"Source: {video.get('source', 'Unknown')}")
except Exception as vid_err:
st.markdown(f"π¬ **[{video_title}]({video_url})**")
st.write(f"Source: {video.get('source', 'Unknown')}")
else:
st.markdown(f"π¬ **[{video_title}]({video_url})**")
st.write(f"Source: {video.get('source', 'Unknown')}")
status.update(label="Response completed!", state="complete")
st.session_state.messages.append({
"role": "assistant",
"content": full_response,
"images": valid_images,
"videos": valid_videos
})
except Exception as api_error:
error_message = str(api_error)
logging.error(f"API error: {error_message}")
status.update(label=f"Error: {error_message}", state="error")
raise Exception(f"Response generation error: {error_message}")
if st.session_state.generate_image and full_response:
with st.spinner("Generating custom image..."):
try:
ip = extract_image_prompt(full_response, query)
img, cap = generate_image(ip)
if img:
st.subheader("AI-Generated Image")
st.image(img, caption=cap, use_container_width=True)
except Exception as img_error:
logging.error(f"Image generation error: {str(img_error)}")
st.warning("Custom image generation failed.")
if full_response:
st.subheader("Download This Response")
c1, c2 = st.columns(2)
c1.download_button(
"Markdown",
data=full_response,
file_name=f"{query[:30]}.md",
mime="text/markdown"
)
c2.download_button(
"HTML",
data=md_to_html(full_response, query[:30]),
file_name=f"{query[:30]}.html",
mime="text/html"
)
if st.session_state.auto_save and st.session_state.messages:
try:
fn = f"conversation_history_auto_{datetime.now():%Y%m%d_%H%M%S}.json"
with open(fn, "w", encoding="utf-8") as fp:
json.dump(st.session_state.messages, fp, ensure_ascii=False, indent=2)
except Exception as e:
logging.error(f"Auto-save failed: {e}")
except Exception as e:
error_message = str(e)
placeholder.error(f"An error occurred: {error_message}")
logging.error(f"Process input error: {error_message}")
ans = f"An error occurred while processing your request: {error_message}"
st.session_state.messages.append({"role": "assistant", "content": ans})
# ββββββββββββββββββββββββββββββββ main ββββββββββββββββββββββββββββββββββββ
def main():
st.write("==== Application Startup at", datetime.now().strftime("%Y-%m-%d %H:%M:%S"), "=====")
perplexity_app()
if __name__ == "__main__":
main()
|