File size: 37,916 Bytes
c99406b 59177aa c99406b 1df6810 e41b021 9a48a94 1df6810 59177aa 79f2daf 59177aa 9a48a94 59177aa fe49aa3 9a48a94 79f2daf eab896a 5eb15fa eab896a 59177aa eab896a a589da1 eab896a 5eb15fa 59177aa c99406b 9a48a94 71c328b 59177aa 9a48a94 71c328b 9a48a94 71c328b eab896a 59177aa eab896a 59177aa eab896a 5eb15fa 3f26784 eab896a 5eb15fa eab896a 5eb15fa eab896a 5eb15fa eab896a 79f2daf 5eb15fa 59177aa eab896a 5eb15fa 59177aa 4f228ef 59177aa eab896a 4f228ef 59177aa eab896a 59177aa eab896a 59177aa eab896a 59177aa eab896a 59177aa eab896a 4f228ef 59177aa eab896a 59177aa eab896a 59177aa 5eb15fa 79f2daf 59177aa fe49aa3 59177aa fe49aa3 59177aa fe49aa3 59177aa 5eb15fa 59177aa 5eb15fa 59177aa 5eb15fa 59177aa 5eb15fa 59177aa 5eb15fa 59177aa 5eb15fa 59177aa 5eb15fa 59177aa 5eb15fa 59177aa 5eb15fa 59177aa fe49aa3 c99406b 59177aa fe49aa3 59177aa eab896a 59177aa fe49aa3 59177aa fe49aa3 4f228ef 5eb15fa 59177aa 5eb15fa 59177aa eab896a 5eb15fa 59177aa 5eb15fa fe49aa3 59177aa c99406b fe49aa3 59177aa eab896a 59177aa eab896a c99406b 59177aa 79f2daf c99406b fe49aa3 59177aa fe49aa3 79f2daf 59177aa 79f2daf eab896a 59177aa eab896a 59177aa 9a48a94 e41b021 79f2daf e41b021 eab896a e41b021 eab896a 9a48a94 e41b021 9a48a94 79f2daf e41b021 9a48a94 c99406b 79f2daf eab896a 59177aa c99406b 3f26784 c99406b 59177aa 1df6810 c99406b eab896a 1df6810 59177aa 6db8a66 24cd13f 6db8a66 59177aa eab896a fe49aa3 59177aa fe49aa3 eab896a 5eb15fa eab896a 59177aa eab896a 59177aa 5eb15fa 59177aa eab896a 59177aa 5eb15fa eab896a 59177aa eab896a a589da1 59177aa 5eb15fa 59177aa eab896a c99406b eab896a 59177aa eab896a 59177aa eab896a c99406b eab896a c99406b 59177aa c99406b 59177aa c99406b 59177aa eab896a 59177aa fe49aa3 59177aa eab896a 59177aa eab896a 59177aa eab896a 59177aa fe49aa3 eab896a 1df6810 59177aa eab896a 8761807 62d2b15 eab896a 59177aa 62d2b15 eab896a 9a48a94 eab896a 75e05d9 59177aa eab896a 59177aa 62d2b15 59177aa 24cd13f 59177aa 4f228ef e41b021 eab896a 24cd13f e41b021 9a48a94 59177aa e41b021 59177aa e41b021 59177aa e41b021 eab896a 59177aa e41b021 59177aa eab896a 59177aa eab896a 4f228ef eab896a 59177aa 4f228ef e41b021 eab896a e41b021 eab896a e41b021 59177aa e41b021 4f228ef eab896a e41b021 59177aa 24cd13f eab896a 24cd13f eab896a 24cd13f eab896a 59177aa eab896a 24cd13f eab896a 71c328b eab896a 71c328b eab896a 71c328b eab896a 59177aa 24cd13f eab896a 71c328b 24cd13f eab896a 71c328b eab896a 71c328b 59177aa 4f228ef eab896a 4f228ef 59177aa 4f228ef 59177aa 4f228ef 59177aa e41b021 59177aa 1df6810 4f52bbc 59177aa eab896a 1df6810 e41b021 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 |
# ββββββββββββββββββββββββββββββββ Imports ββββββββββββββββββββββββββββββββ
import os, json, re, logging, requests, markdown, time, io
from datetime import datetime
import streamlit as st
from openai import OpenAI # OpenAI λΌμ΄λΈλ¬λ¦¬
from gradio_client import Client
import pandas as pd
import PyPDF2 # For handling PDF files
# ββββββββββββββββββββββββββββββββ Environment Variables / Constants βββββββββββββββββββββββββ
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY", "")
BRAVE_KEY = os.getenv("SERPHOUSE_API_KEY", "") # Keep this name
BRAVE_ENDPOINT = "https://api.search.brave.com/res/v1/web/search"
IMAGE_API_URL = "http://211.233.58.201:7896"
MAX_TOKENS = 7999
# Search modes and style definitions (in English)
SEARCH_MODES = {
"comprehensive": "Comprehensive answer with multiple sources",
"academic": "Academic and research-focused results",
"news": "Latest news and current events",
"technical": "Technical and specialized information",
"educational": "Educational and learning resources"
}
RESPONSE_STYLES = {
"professional": "Professional and formal tone",
"casual": "Friendly and conversational tone",
"simple": "Simple and easy to understand",
"detailed": "Detailed and thorough explanations"
}
# Example search queries
EXAMPLE_QUERIES = {
"example1": "What are the latest developments in quantum computing?",
"example2": "How does climate change affect biodiversity in tropical rainforests?",
"example3": "What are the economic implications of artificial intelligence in the job market?"
}
# ββββββββββββββββββββββββββββββββ Logging ββββββββββββββββββββββββββββββββ
logging.basicConfig(level=logging.INFO,
format="%(asctime)s - %(levelname)s - %(message)s")
# ββββββββββββββββββββββββββββββββ OpenAI Client ββββββββββββββββββββββββββ
# OpenAI ν΄λΌμ΄μΈνΈμ νμμμκ³Ό μ¬μλ λ‘μ§ μΆκ°
@st.cache_resource
def get_openai_client():
"""Create an OpenAI client with timeout and retry settings."""
if not OPENAI_API_KEY:
raise RuntimeError("β οΈ OPENAI_API_KEY νκ²½ λ³μκ° μ€μ λμ§ μμμ΅λλ€.")
return OpenAI(
api_key=OPENAI_API_KEY,
timeout=60.0, # νμμμ 60μ΄λ‘ μ€μ
max_retries=3 # μ¬μλ νμ 3νλ‘ μ€μ
)
# ββββββββββββββββββββββββββββββββ System Prompt βββββββββββββββββββββββββ
def get_system_prompt(mode="comprehensive", style="professional", include_search_results=True, include_uploaded_files=False) -> str:
"""
Generate a system prompt for the perplexity-like interface based on:
- The selected search mode and style
- Guidelines for using web search results and uploaded files
"""
# Base prompt for comprehensive mode
comprehensive_prompt = """
You are an advanced AI assistant that provides comprehensive answers with multiple sources, similar to Perplexity.
Your task is to:
1. Thoroughly analyze the user's query
2. Provide a clear, well-structured answer integrating information from multiple sources
3. Include relevant images, videos, and links in your response
4. Format your answer with proper headings, bullet points, and sections
5. Cite sources inline and provide a references section at the end
Important guidelines:
- Organize information logically with clear section headings
- Use bullet points and numbered lists for clarity
- Include specific, factual information whenever possible
- Provide balanced perspectives on controversial topics
- Display relevant statistics, data, or quotes when appropriate
- Format your response using markdown for readability
"""
# Alternative modes
mode_prompts = {
"academic": """
Your focus is on providing academic and research-focused responses:
- Prioritize peer-reviewed research and academic sources
- Include citations in a formal academic format
- Discuss methodologies and research limitations where relevant
- Present different scholarly perspectives on the topic
- Use precise, technical language appropriate for an academic audience
""",
"news": """
Your focus is on providing the latest news and current events:
- Prioritize recent news articles and current information
- Include publication dates for all news sources
- Present multiple perspectives from different news outlets
- Distinguish between facts and opinions/editorial content
- Update information with the most recent developments
""",
"technical": """
Your focus is on providing technical and specialized information:
- Use precise technical terminology appropriate to the field
- Include code snippets, formulas, or technical diagrams where relevant
- Break down complex concepts into step-by-step explanations
- Reference technical documentation, standards, and best practices
- Consider different technical approaches or methodologies
""",
"educational": """
Your focus is on providing educational and learning resources:
- Structure information in a learning-friendly progression
- Include examples, analogies, and visual explanations
- Highlight key concepts and definitions
- Suggest further learning resources at different difficulty levels
- Present information that's accessible to learners at various levels
"""
}
# Response styles
style_guides = {
"professional": "Use a professional, authoritative voice. Clearly explain technical terms and present data systematically.",
"casual": "Use a relaxed, conversational style with a friendly tone. Include relatable examples and occasionally use informal expressions.",
"simple": "Use straightforward language and avoid jargon. Keep sentences and paragraphs short. Explain concepts as if to someone with no background in the subject.",
"detailed": "Provide thorough explanations with comprehensive background information. Explore nuances and edge cases. Present multiple perspectives and detailed analysis."
}
# Guidelines for using search results
search_guide = """
Guidelines for Using Search Results:
- Include source links directly in your response using markdown: [Source Name](URL)
- For each major claim or piece of information, indicate its source
- If sources conflict, explain the different perspectives and their reliability
- Include 3-5 relevant images by writing: 
- Include 1-2 relevant video links when appropriate by writing: [Video: Title](video_url)
- Format search information into a cohesive, well-structured response
- Include a "References" section at the end listing all major sources with links
"""
# Guidelines for using uploaded files
upload_guide = """
Guidelines for Using Uploaded Files:
- Treat the uploaded files as primary sources for your response
- Extract and highlight key information from files that directly addresses the query
- Quote relevant passages and cite the specific file
- For numerical data in CSV files, consider creating summary statements
- For PDF content, reference specific sections or pages
- Integrate file information seamlessly with web search results
- When information conflicts, prioritize file content over general web results
"""
# Choose base prompt based on mode
if mode == "comprehensive":
final_prompt = comprehensive_prompt
else:
final_prompt = comprehensive_prompt + "\n" + mode_prompts.get(mode, "")
# Add style guide
if style in style_guides:
final_prompt += f"\n\nTone and Style: {style_guides[style]}"
# Add search results guidance
if include_search_results:
final_prompt += f"\n\n{search_guide}"
# Add uploaded files guidance
if include_uploaded_files:
final_prompt += f"\n\n{upload_guide}"
# Additional formatting instructions
final_prompt += """
\n\nAdditional Formatting Requirements:
- Use markdown headings (## and ###) to organize your response
- Use bold text (**text**) for emphasis on important points
- Include a "Related Questions" section at the end with 3-5 follow-up questions
- Format your response with proper spacing and paragraph breaks
- Make all links clickable by using proper markdown format: [text](url)
"""
return final_prompt
# ββββββββββββββββββββββββββββββββ Brave Search API ββββββββββββββββββββββββ
@st.cache_data(ttl=3600)
def brave_search(query: str, count: int = 20):
"""
Call the Brave Web Search API β list[dict]
Returns fields: index, title, link, snippet, displayed_link
"""
if not BRAVE_KEY:
raise RuntimeError("β οΈ SERPHOUSE_API_KEY (Brave API Key) environment variable is empty.")
headers = {
"Accept": "application/json",
"Accept-Encoding": "gzip",
"X-Subscription-Token": BRAVE_KEY
}
params = {"q": query, "count": str(count)}
for attempt in range(3):
try:
r = requests.get(BRAVE_ENDPOINT, headers=headers, params=params, timeout=15)
r.raise_for_status()
data = r.json()
logging.info(f"Brave search result data structure: {list(data.keys())}")
raw = data.get("web", {}).get("results") or data.get("results", [])
if not raw:
logging.warning(f"No Brave search results found. Response: {data}")
raise ValueError("No search results found.")
arts = []
for i, res in enumerate(raw[:count], 1):
url = res.get("url", res.get("link", ""))
host = re.sub(r"https?://(www\.)?", "", url).split("/")[0]
arts.append({
"index": i,
"title": res.get("title", "No title"),
"link": url,
"snippet": res.get("description", res.get("text", "No snippet")),
"displayed_link": host
})
logging.info(f"Brave search success: {len(arts)} results")
return arts
except Exception as e:
logging.error(f"Brave search failure (attempt {attempt+1}/3): {e}")
if attempt < 2:
time.sleep(2)
return []
def mock_results(query: str) -> str:
"""Fallback search results if API fails"""
ts = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
return (f"# Fallback Search Content (Generated: {ts})\n\n"
f"The search API request failed. Please generate a response based on any pre-existing knowledge about '{query}'.\n\n"
f"You may consider the following points:\n\n"
f"- Basic concepts and importance of {query}\n"
f"- Commonly known related statistics or trends\n"
f"- Typical expert opinions on this subject\n"
f"- Questions that readers might have\n\n"
f"Note: This is fallback guidance, not real-time data.\n\n")
def do_web_search(query: str) -> str:
"""Perform web search and format the results."""
try:
arts = brave_search(query, 20)
if not arts:
logging.warning("No search results, using fallback content")
return mock_results(query)
hdr = "# Web Search Results\nUse these results to provide a comprehensive answer with multiple sources. Include relevant images, videos, and links.\n\n"
body = "\n".join(
f"### Result {a['index']}: {a['title']}\n\n{a['snippet']}\n\n"
f"**Source**: [{a['displayed_link']}]({a['link']})\n\n---\n"
for a in arts
)
return hdr + body
except Exception as e:
logging.error(f"Web search process failed: {str(e)}")
return mock_results(query)
# ββββββββββββββββββββββββββββββββ File Upload Handling βββββββββββββββββββββ
def process_text_file(file):
"""Handle text file"""
try:
content = file.read()
file.seek(0)
text = content.decode('utf-8', errors='ignore')
if len(text) > 10000:
text = text[:9700] + "...(truncated)..."
result = f"## Text File: {file.name}\n\n"
result += text
return result
except Exception as e:
logging.error(f"Error processing text file: {str(e)}")
return f"Error processing text file: {str(e)}"
def process_csv_file(file):
"""Handle CSV file"""
try:
content = file.read()
file.seek(0)
df = pd.read_csv(io.BytesIO(content))
result = f"## CSV File: {file.name}\n\n"
result += f"- Rows: {len(df)}\n"
result += f"- Columns: {len(df.columns)}\n"
result += f"- Column Names: {', '.join(df.columns.tolist())}\n\n"
result += "### Data Preview\n\n"
preview_df = df.head(10)
try:
markdown_table = preview_df.to_markdown(index=False)
if markdown_table:
result += markdown_table + "\n\n"
else:
result += "Unable to display CSV data.\n\n"
except Exception as e:
logging.error(f"Markdown table conversion error: {e}")
result += "Displaying data as text:\n\n"
result += str(preview_df) + "\n\n"
num_cols = df.select_dtypes(include=['number']).columns
if len(num_cols) > 0:
result += "### Basic Statistical Information\n\n"
try:
stats_df = df[num_cols].describe().round(2)
stats_markdown = stats_df.to_markdown()
if stats_markdown:
result += stats_markdown + "\n\n"
else:
result += "Unable to display statistical information.\n\n"
except Exception as e:
logging.error(f"Statistical info conversion error: {e}")
result += "Unable to generate statistical information.\n\n"
return result
except Exception as e:
logging.error(f"CSV file processing error: {str(e)}")
return f"Error processing CSV file: {str(e)}"
def process_pdf_file(file):
"""Handle PDF file"""
try:
# Read file in bytes
file_bytes = file.read()
file.seek(0)
# Use PyPDF2
pdf_file = io.BytesIO(file_bytes)
reader = PyPDF2.PdfReader(pdf_file, strict=False)
# Basic info
result = f"## PDF File: {file.name}\n\n"
result += f"- Total pages: {len(reader.pages)}\n\n"
# Extract text by page (limit to first 5 pages)
max_pages = min(5, len(reader.pages))
all_text = ""
for i in range(max_pages):
try:
page = reader.pages[i]
page_text = page.extract_text()
current_page_text = f"### Page {i+1}\n\n"
if page_text and len(page_text.strip()) > 0:
# Limit to 1500 characters per page
if len(page_text) > 1500:
current_page_text += page_text[:1500] + "...(truncated)...\n\n"
else:
current_page_text += page_text + "\n\n"
else:
current_page_text += "(No text could be extracted from this page)\n\n"
all_text += current_page_text
# If total text is too long, break
if len(all_text) > 8000:
all_text += "...(truncating remaining pages; PDF is too large)...\n\n"
break
except Exception as page_err:
logging.error(f"Error processing PDF page {i+1}: {str(page_err)}")
all_text += f"### Page {i+1}\n\n(Error extracting content: {str(page_err)})\n\n"
if len(reader.pages) > max_pages:
all_text += f"\nNote: Only the first {max_pages} pages are shown out of {len(reader.pages)} total.\n\n"
result += "### PDF Content\n\n" + all_text
return result
except Exception as e:
logging.error(f"PDF file processing error: {str(e)}")
return f"## PDF File: {file.name}\n\nError occurred: {str(e)}\n\nThis PDF file cannot be processed."
def process_uploaded_files(files):
"""Combine the contents of all uploaded files into one string."""
if not files:
return None
result = "# Uploaded File Contents\n\n"
result += "Below is the content from the files provided by the user. Integrate this data as a main source of information for your response.\n\n"
for file in files:
try:
ext = file.name.split('.')[-1].lower()
if ext == 'txt':
result += process_text_file(file) + "\n\n---\n\n"
elif ext == 'csv':
result += process_csv_file(file) + "\n\n---\n\n"
elif ext == 'pdf':
result += process_pdf_file(file) + "\n\n---\n\n"
else:
result += f"### Unsupported File: {file.name}\n\n---\n\n"
except Exception as e:
logging.error(f"File processing error {file.name}: {e}")
result += f"### File processing error: {file.name}\n\nError: {e}\n\n---\n\n"
return result
# ββββββββββββββββββββββββββββββββ Image & Utility βββββββββββββββββββββββββ
def get_images_for_query(query, count=5):
"""
Simulate getting relevant images for a query.
In a real implementation, this would call an image search API.
"""
# This is a placeholder - in production, you would use a real image search API
sample_images = [
"https://source.unsplash.com/random/800x600/?"+query.replace(" ", "+"),
"https://source.unsplash.com/random/600x400/?"+query.replace(" ", "+"),
"https://source.unsplash.com/random/400x300/?"+query.replace(" ", "+"),
]
return sample_images[:min(count, len(sample_images))]
def get_videos_for_query(query, count=2):
"""
Simulate getting relevant videos for a query.
In a real implementation, this would call a video search API.
"""
# This is a placeholder - in production, you would use a real video search API
sample_videos = [
{"title": f"Introduction to {query}", "url": "https://www.youtube.com/results?search_query="+query.replace(" ", "+")},
{"title": f"Detailed explanation of {query}", "url": "https://www.youtube.com/results?search_query=advanced+"+query.replace(" ", "+")}
]
return sample_videos[:min(count, len(sample_videos))]
def generate_image(prompt, w=768, h=768, g=3.5, steps=30, seed=3):
"""Image generation function."""
if not prompt:
return None, "Insufficient prompt"
try:
res = Client(IMAGE_API_URL).predict(
prompt=prompt, width=w, height=h, guidance=g,
inference_steps=steps, seed=seed,
do_img2img=False, init_image=None,
image2image_strength=0.8, resize_img=True,
api_name="/generate_image"
)
return res[0], f"Seed: {res[1]}"
except Exception as e:
logging.error(e)
return None, str(e)
def extract_image_prompt(response_text: str, topic: str):
"""
Generate a single-line English image prompt from the response content.
"""
client = get_openai_client()
try:
response = client.chat.completions.create(
model="gpt-4.1-mini",
messages=[
{"role": "system", "content": "Generate a single-line English image prompt from the following text. Return only the prompt text, nothing else."},
{"role": "user", "content": f"Topic: {topic}\n\n---\n{response_text}\n\n---"}
],
temperature=1,
max_tokens=80,
top_p=1
)
return response.choices[0].message.content.strip()
except Exception as e:
logging.error(f"OpenAI image prompt generation error: {e}")
return f"A professional photo related to {topic}, high quality"
def md_to_html(md: str, title="Perplexity-like Response"):
"""Convert Markdown to HTML."""
return f"<!DOCTYPE html><html><head><title>{title}</title><meta charset='utf-8'></head><body>{markdown.markdown(md)}</body></html>"
def keywords(text: str, top=5):
"""Simple keyword extraction."""
cleaned = re.sub(r"[^κ°-ν£a-zA-Z0-9\s]", "", text)
return " ".join(cleaned.split()[:top])
# ββββββββββββββββββββββββββββββββ Streamlit UI ββββββββββββββββββββββββββββ
def perplexity_app():
st.title("Perplexity-like AI Assistant")
# Set default session state
if "ai_model" not in st.session_state:
st.session_state.ai_model = "gpt-4.1-mini" # κ³ μ λͺ¨λΈ μ€μ
if "messages" not in st.session_state:
st.session_state.messages = []
if "auto_save" not in st.session_state:
st.session_state.auto_save = True
if "generate_image" not in st.session_state:
st.session_state.generate_image = False
if "web_search_enabled" not in st.session_state:
st.session_state.web_search_enabled = True
if "search_mode" not in st.session_state:
st.session_state.search_mode = "comprehensive"
if "response_style" not in st.session_state:
st.session_state.response_style = "professional"
# Sidebar UI
sb = st.sidebar
sb.title("Search Settings")
sb.subheader("Response Configuration")
sb.selectbox(
"Search Mode",
options=list(SEARCH_MODES.keys()),
format_func=lambda x: SEARCH_MODES[x],
key="search_mode"
)
sb.selectbox(
"Response Style",
options=list(RESPONSE_STYLES.keys()),
format_func=lambda x: RESPONSE_STYLES[x],
key="response_style"
)
# Example queries
sb.subheader("Example Queries")
c1, c2, c3 = sb.columns(3)
if c1.button("Quantum Computing", key="ex1"):
process_example(EXAMPLE_QUERIES["example1"])
if c2.button("Climate Change", key="ex2"):
process_example(EXAMPLE_QUERIES["example2"])
if c3.button("AI Economics", key="ex3"):
process_example(EXAMPLE_QUERIES["example3"])
sb.subheader("Other Settings")
sb.toggle("Auto Save", key="auto_save")
sb.toggle("Auto Image Generation", key="generate_image")
web_search_enabled = sb.toggle("Use Web Search", value=st.session_state.web_search_enabled)
st.session_state.web_search_enabled = web_search_enabled
if web_search_enabled:
st.sidebar.info("β
Web search results will be integrated into the response.")
# Download the latest response
latest_response = next(
(m["content"] for m in reversed(st.session_state.messages)
if m["role"] == "assistant" and m["content"].strip()),
None
)
if latest_response:
# Extract a title from the response - first heading or first line
title_match = re.search(r"# (.*?)(\n|$)", latest_response)
if title_match:
title = title_match.group(1).strip()
else:
first_line = latest_response.split('\n', 1)[0].strip()
title = first_line[:40] + "..." if len(first_line) > 40 else first_line
sb.subheader("Download Latest Response")
d1, d2 = sb.columns(2)
d1.download_button("Download as Markdown", latest_response,
file_name=f"{title}.md", mime="text/markdown")
d2.download_button("Download as HTML", md_to_html(latest_response, title),
file_name=f"{title}.html", mime="text/html")
# JSON conversation record upload
up = sb.file_uploader("Load Conversation History (.json)", type=["json"], key="json_uploader")
if up:
try:
st.session_state.messages = json.load(up)
sb.success("Conversation history loaded successfully")
except Exception as e:
sb.error(f"Failed to load: {e}")
# JSON conversation record download
if sb.button("Download Conversation as JSON"):
sb.download_button(
"Save",
data=json.dumps(st.session_state.messages, ensure_ascii=False, indent=2),
file_name="conversation_history.json",
mime="application/json"
)
# File Upload
st.subheader("Upload Files")
uploaded_files = st.file_uploader(
"Upload files to be used as reference (txt, csv, pdf)",
type=["txt", "csv", "pdf"],
accept_multiple_files=True,
key="file_uploader"
)
if uploaded_files:
file_count = len(uploaded_files)
st.success(f"{file_count} files uploaded. They will be used as sources for your query.")
with st.expander("Preview Uploaded Files", expanded=False):
for idx, file in enumerate(uploaded_files):
st.write(f"**File Name:** {file.name}")
ext = file.name.split('.')[-1].lower()
if ext == 'txt':
preview = file.read(1000).decode('utf-8', errors='ignore')
file.seek(0)
st.text_area(
f"Preview of {file.name}",
preview + ("..." if len(preview) >= 1000 else ""),
height=150
)
elif ext == 'csv':
try:
df = pd.read_csv(file)
file.seek(0)
st.write("CSV Preview (up to 5 rows)")
st.dataframe(df.head(5))
except Exception as e:
st.error(f"CSV preview failed: {e}")
elif ext == 'pdf':
try:
file_bytes = file.read()
file.seek(0)
pdf_file = io.BytesIO(file_bytes)
reader = PyPDF2.PdfReader(pdf_file, strict=False)
pc = len(reader.pages)
st.write(f"PDF File: {pc} pages")
if pc > 0:
try:
page_text = reader.pages[0].extract_text()
preview = page_text[:500] if page_text else "(No text extracted)"
st.text_area("Preview of the first page", preview + "...", height=150)
except:
st.warning("Failed to extract text from the first page")
except Exception as e:
st.error(f"PDF preview failed: {e}")
if idx < file_count - 1:
st.divider()
# Display existing messages
for m in st.session_state.messages:
with st.chat_message(m["role"]):
# Process markdown to allow clickable links and properly rendered content
st.markdown(m["content"], unsafe_allow_html=True)
# Display images if present
if "images" in m and m["images"]:
st.subheader("Related Images")
cols = st.columns(min(3, len(m["images"])))
for i, (img_url, caption) in enumerate(m["images"]):
col_idx = i % len(cols)
with cols[col_idx]:
st.image(img_url, caption=caption, use_column_width=True)
# Display videos if present
if "videos" in m and m["videos"]:
st.subheader("Related Videos")
for video in m["videos"]:
st.markdown(f"[π¬ {video['title']}]({video['url']})", unsafe_allow_html=True)
# User input
query = st.chat_input("Enter your query or question here.")
if query:
process_input(query, uploaded_files)
# μ¬μ΄λλ° νλ¨ λ°°μ§(λ§ν¬) μΆκ°
sb.markdown("---")
sb.markdown("Created by [https://ginigen.com](https://ginigen.com) | [YouTube Channel](https://www.youtube.com/@ginipickaistudio)")
def process_example(topic):
"""Process the selected example query."""
process_input(topic, [])
def process_input(query: str, uploaded_files):
# Add user's message
if not any(m["role"] == "user" and m["content"] == query for m in st.session_state.messages):
st.session_state.messages.append({"role": "user", "content": query})
with st.chat_message("user"):
st.markdown(query)
with st.chat_message("assistant"):
placeholder = st.empty()
message_placeholder = st.empty()
full_response = ""
use_web_search = st.session_state.web_search_enabled
has_uploaded_files = bool(uploaded_files) and len(uploaded_files) > 0
try:
# μν νμλ₯Ό μν μν μ»΄ν¬λνΈ
status = st.status("Preparing to answer your query...")
status.update(label="Initializing client...")
client = get_openai_client()
# Prepare conversation messages
messages = []
# Web search
search_content = None
if use_web_search:
status.update(label="Performing web search...")
with st.spinner("Searching the web..."):
search_content = do_web_search(keywords(query, top=5))
# Process uploaded files β content
file_content = None
if has_uploaded_files:
status.update(label="Processing uploaded files...")
with st.spinner("Analyzing files..."):
file_content = process_uploaded_files(uploaded_files)
# Get relevant images and videos (before generating response)
status.update(label="Finding related media...")
related_images = get_images_for_query(query) if use_web_search else []
related_videos = get_videos_for_query(query) if use_web_search else []
# Build system prompt
status.update(label="Preparing comprehensive answer...")
sys_prompt = get_system_prompt(
mode=st.session_state.search_mode,
style=st.session_state.response_style,
include_search_results=use_web_search,
include_uploaded_files=has_uploaded_files
)
# OpenAI API νΈμΆ μ€λΉ
status.update(label="Generating response...")
# λ©μμ§ κ΅¬μ±
api_messages = [
{"role": "system", "content": sys_prompt}
]
user_content = query
# κ²μ κ²°κ³Όκ° μμΌλ©΄ μ¬μ©μ ν둬ννΈμ μΆκ°
if search_content:
user_content += "\n\n" + search_content
# νμΌ λ΄μ©μ΄ μμΌλ©΄ μ¬μ©μ ν둬ννΈμ μΆκ°
if file_content:
user_content += "\n\n" + file_content
# Add image and video information to the prompt
if related_images:
user_content += "\n\n# Related Images\n"
for i, img_url in enumerate(related_images):
user_content += f"\n"
if related_videos:
user_content += "\n\n# Related Videos\n"
for video in related_videos:
user_content += f"\n[Video: {video['title']}]({video['url']})"
# μ¬μ©μ λ©μμ§ μΆκ°
api_messages.append({"role": "user", "content": user_content})
# OpenAI API μ€νΈλ¦¬λ° νΈμΆ - κ³ μ λͺ¨λΈ "gpt-4.1-mini" μ¬μ©
try:
# μ€νΈλ¦¬λ° λ°©μμΌλ‘ API νΈμΆ
stream = client.chat.completions.create(
model="gpt-4.1-mini", # κ³ μ λͺ¨λΈ μ¬μ©
messages=api_messages,
temperature=1,
max_tokens=MAX_TOKENS,
top_p=1,
stream=True # μ€νΈλ¦¬λ° νμ±ν
)
# μ€νΈλ¦¬λ° μλ΅ μ²λ¦¬
for chunk in stream:
if chunk.choices and len(chunk.choices) > 0 and chunk.choices[0].delta.content is not None:
content_delta = chunk.choices[0].delta.content
full_response += content_delta
message_placeholder.markdown(full_response + "β", unsafe_allow_html=True)
# μ΅μ’
μλ΅ νμ (컀μ μ κ±°)
message_placeholder.markdown(full_response, unsafe_allow_html=True)
# Display related images if available
if related_images:
image_captions = [f"Related image {i+1}" for i in range(len(related_images))]
images_with_captions = list(zip(related_images, image_captions))
cols = st.columns(min(3, len(related_images)))
for i, (img_url, caption) in enumerate(images_with_captions):
col_idx = i % len(cols)
with cols[col_idx]:
st.image(img_url, caption=caption, use_column_width=True)
# Display related videos if available
if related_videos:
st.subheader("Related Videos")
for video in related_videos:
st.markdown(f"[π¬ {video['title']}]({video['url']})", unsafe_allow_html=True)
status.update(label="Response completed!", state="complete")
# Save the response with images and videos in the session state
st.session_state.messages.append({
"role": "assistant",
"content": full_response,
"images": list(zip(related_images, image_captions)) if related_images else [],
"videos": related_videos
})
except Exception as api_error:
error_message = str(api_error)
logging.error(f"API error: {error_message}")
status.update(label=f"Error: {error_message}", state="error")
raise Exception(f"Response generation error: {error_message}")
# Additional image generation if enabled
if st.session_state.generate_image and full_response:
with st.spinner("Generating custom image..."):
try:
ip = extract_image_prompt(full_response, query)
img, cap = generate_image(ip)
if img:
st.subheader("AI-Generated Image")
st.image(img, caption=cap)
except Exception as img_error:
logging.error(f"Image generation error: {str(img_error)}")
st.warning("Custom image generation failed. Using web images only.")
# Download buttons
if full_response:
st.subheader("Download This Response")
c1, c2 = st.columns(2)
c1.download_button(
"Markdown",
data=full_response,
file_name=f"{query[:30]}.md",
mime="text/markdown"
)
c2.download_button(
"HTML",
data=md_to_html(full_response, query[:30]),
file_name=f"{query[:30]}.html",
mime="text/html"
)
# Auto save
if st.session_state.auto_save and st.session_state.messages:
try:
fn = f"conversation_history_auto_{datetime.now():%Y%m%d_%H%M%S}.json"
with open(fn, "w", encoding="utf-8") as fp:
json.dump(st.session_state.messages, fp, ensure_ascii=False, indent=2)
except Exception as e:
logging.error(f"Auto-save failed: {e}")
except Exception as e:
error_message = str(e)
placeholder.error(f"An error occurred: {error_message}")
logging.error(f"Process input error: {error_message}")
ans = f"An error occurred while processing your request: {error_message}"
st.session_state.messages.append({"role": "assistant", "content": ans})
# ββββββββββββββββββββββββββββββββ main ββββββββββββββββββββββββββββββββββββ
def main():
perplexity_app()
if __name__ == "__main__":
main() |