Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -4,7 +4,6 @@ from gradio_pannellum import Pannellum
|
|
| 4 |
import torch
|
| 5 |
from huggingface_hub import snapshot_download
|
| 6 |
from txt2panoimg import Text2360PanoramaImagePipeline
|
| 7 |
-
from img2panoimg import Image2360PanoramaImagePipeline
|
| 8 |
from PIL import Image
|
| 9 |
|
| 10 |
# Download the model
|
|
@@ -12,10 +11,6 @@ model_path = snapshot_download("archerfmy0831/sd-t2i-360panoimage")
|
|
| 12 |
|
| 13 |
# Initialize pipelines
|
| 14 |
txt2panoimg = Text2360PanoramaImagePipeline(model_path, torch_dtype=torch.float16)
|
| 15 |
-
img2panoimg = Image2360PanoramaImagePipeline(model_path, torch_dtype=torch.float16)
|
| 16 |
-
|
| 17 |
-
# Load the default mask image
|
| 18 |
-
default_mask = Image.open("i2p-mask.jpg").convert("RGB")
|
| 19 |
|
| 20 |
@spaces.GPU(duration=200)
|
| 21 |
def text_to_pano(prompt, upscale):
|
|
@@ -23,55 +18,21 @@ def text_to_pano(prompt, upscale):
|
|
| 23 |
output = txt2panoimg(input_data)
|
| 24 |
return output
|
| 25 |
|
| 26 |
-
|
| 27 |
-
def image_to_pano(image, mask, prompt, upscale):
|
| 28 |
-
image = image.resize((512, 512))
|
| 29 |
-
if mask is None:
|
| 30 |
-
mask = default_mask.resize((512, 512))
|
| 31 |
-
else:
|
| 32 |
-
mask = mask.resize((512, 512))
|
| 33 |
-
input_data = {
|
| 34 |
-
'prompt': prompt,
|
| 35 |
-
'image': image,
|
| 36 |
-
'mask': mask,
|
| 37 |
-
'upscale': upscale
|
| 38 |
-
}
|
| 39 |
-
output = img2panoimg(input_data)
|
| 40 |
-
return output
|
| 41 |
-
|
| 42 |
-
with gr.Blocks() as demo:
|
| 43 |
gr.Markdown("# 360° Panorama Image Generation")
|
| 44 |
|
| 45 |
-
with gr.
|
| 46 |
-
with gr.
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
)
|
| 59 |
-
|
| 60 |
-
with gr.Tab("Image to 360° Panorama"):
|
| 61 |
-
with gr.Row():
|
| 62 |
-
with gr.Column():
|
| 63 |
-
i2p_image = gr.Image(label="Upload Input Image", type="pil")
|
| 64 |
-
i2p_mask = gr.Image(label="Upload Mask Image (Optional)", type="pil")
|
| 65 |
-
i2p_prompt = gr.Textbox(label="Enter your prompt", lines=3)
|
| 66 |
-
i2p_upscale = gr.Checkbox(label="Upscale (requires >16GB GPU)")
|
| 67 |
-
i2p_generate = gr.Button("Generate Panorama")
|
| 68 |
-
with gr.Column():
|
| 69 |
-
i2p_output = Pannellum(label="Generated 360° Panorama")
|
| 70 |
-
|
| 71 |
-
i2p_generate.click(
|
| 72 |
-
image_to_pano,
|
| 73 |
-
inputs=[i2p_image, i2p_mask, i2p_prompt, i2p_upscale],
|
| 74 |
-
outputs=i2p_output
|
| 75 |
-
)
|
| 76 |
|
| 77 |
demo.launch()
|
|
|
|
| 4 |
import torch
|
| 5 |
from huggingface_hub import snapshot_download
|
| 6 |
from txt2panoimg import Text2360PanoramaImagePipeline
|
|
|
|
| 7 |
from PIL import Image
|
| 8 |
|
| 9 |
# Download the model
|
|
|
|
| 11 |
|
| 12 |
# Initialize pipelines
|
| 13 |
txt2panoimg = Text2360PanoramaImagePipeline(model_path, torch_dtype=torch.float16)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
@spaces.GPU(duration=200)
|
| 16 |
def text_to_pano(prompt, upscale):
|
|
|
|
| 18 |
output = txt2panoimg(input_data)
|
| 19 |
return output
|
| 20 |
|
| 21 |
+
with gr.Blocks(theme='bethecloud/storj_theme') as demo:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
gr.Markdown("# 360° Panorama Image Generation")
|
| 23 |
|
| 24 |
+
with gr.Row():
|
| 25 |
+
with gr.Column():
|
| 26 |
+
t2p_input = gr.Textbox(label="Enter your prompt", lines=3)
|
| 27 |
+
t2p_upscale = gr.Checkbox(label="Upscale (requires >16GB GPU)")
|
| 28 |
+
t2p_generate = gr.Button("Generate Panorama")
|
| 29 |
+
with gr.Column():
|
| 30 |
+
t2p_output = Pannellum(label="Generated 360° Panorama")
|
| 31 |
+
|
| 32 |
+
t2p_generate.click(
|
| 33 |
+
text_to_pano,
|
| 34 |
+
inputs=[t2p_input, t2p_upscale],
|
| 35 |
+
outputs=t2p_output
|
| 36 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
|
| 38 |
demo.launch()
|