Spaces:
Running
Running
Upload 3 files
Browse files- app.py +211 -0
- packages.txt +1 -0
- requirements.txt +7 -0
app.py
ADDED
|
@@ -0,0 +1,211 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
import onnxruntime as ort
|
| 4 |
+
from PIL import Image
|
| 5 |
+
import requests
|
| 6 |
+
import numpy as np
|
| 7 |
+
from transformers import AutoTokenizer, AutoProcessor
|
| 8 |
+
import os
|
| 9 |
+
|
| 10 |
+
os.system('wget https://huggingface.co/llava-hf/llava-interleave-qwen-0.5b-hf/resolve/main/onnx/decoder_model_merged_q4f16.onnx')
|
| 11 |
+
os.system('wget https://huggingface.co/llava-hf/llava-interleave-qwen-0.5b-hf/resolve/main/onnx/embed_tokens_q4f16.onnx')
|
| 12 |
+
os.system('wget https://huggingface.co/llava-hf/llava-interleave-qwen-0.5b-hf/resolve/main/onnx/vision_encoder_q4f16.onnx')
|
| 13 |
+
# Load the tokenizer and processor
|
| 14 |
+
tokenizer = AutoTokenizer.from_pretrained("llava-hf/llava-interleave-qwen-0.5b-hf")
|
| 15 |
+
processor = AutoProcessor.from_pretrained("llava-hf/llava-interleave-qwen-0.5b-hf")
|
| 16 |
+
|
| 17 |
+
vision_encoder_session = ort.InferenceSession("vision_encoder_q4f16.onnx")
|
| 18 |
+
decoder_session = ort.InferenceSession("decoder_model_merged_q4f16.onnx")
|
| 19 |
+
embed_tokens_session = ort.InferenceSession("embed_tokens_q4f16.onnx")
|
| 20 |
+
|
| 21 |
+
def merge_input_ids_with_image_features(image_features, inputs_embeds, input_ids, attention_mask,pad_token_id,special_image_token_id):
|
| 22 |
+
num_images, num_image_patches, embed_dim = image_features.shape
|
| 23 |
+
batch_size, sequence_length = input_ids.shape
|
| 24 |
+
left_padding = not np.sum(input_ids[:, -1] == pad_token_id)
|
| 25 |
+
# 1. Create a mask to know where special image tokens are
|
| 26 |
+
special_image_token_mask = input_ids == special_image_token_id
|
| 27 |
+
num_special_image_tokens = np.sum(special_image_token_mask, axis=-1)
|
| 28 |
+
# Compute the maximum embed dimension
|
| 29 |
+
max_embed_dim = (num_special_image_tokens.max() * (num_image_patches - 1)) + sequence_length
|
| 30 |
+
batch_indices, non_image_indices = np.where(input_ids != special_image_token_id)
|
| 31 |
+
|
| 32 |
+
# 2. Compute the positions where text should be written
|
| 33 |
+
# Calculate new positions for text tokens in merged image-text sequence.
|
| 34 |
+
# `special_image_token_mask` identifies image tokens. Each image token will be replaced by `nb_text_tokens_per_images - 1` text tokens.
|
| 35 |
+
# `np.cumsum` computes how each image token shifts subsequent text token positions.
|
| 36 |
+
# - 1 to adjust for zero-based indexing, as `cumsum` inherently increases indices by one.
|
| 37 |
+
new_token_positions = np.cumsum((special_image_token_mask * (num_image_patches - 1) + 1), -1) - 1
|
| 38 |
+
nb_image_pad = max_embed_dim - 1 - new_token_positions[:, -1]
|
| 39 |
+
if left_padding:
|
| 40 |
+
new_token_positions += nb_image_pad[:, None] # offset for left padding
|
| 41 |
+
text_to_overwrite = new_token_positions[batch_indices, non_image_indices]
|
| 42 |
+
|
| 43 |
+
# 3. Create the full embedding, already padded to the maximum position
|
| 44 |
+
final_embedding = np.zeros((batch_size, max_embed_dim, embed_dim), dtype=np.float32)
|
| 45 |
+
final_attention_mask = np.zeros((batch_size, max_embed_dim), dtype=np.int64)
|
| 46 |
+
|
| 47 |
+
# 4. Fill the embeddings based on the mask. If we have ["hey" "<image>", "how", "are"]
|
| 48 |
+
# we need to index copy on [0, 577, 578, 579] for the text and [1:576] for the image features
|
| 49 |
+
final_embedding[batch_indices, text_to_overwrite] = inputs_embeds[batch_indices, non_image_indices]
|
| 50 |
+
final_attention_mask[batch_indices, text_to_overwrite] = attention_mask[batch_indices, non_image_indices]
|
| 51 |
+
# 5. Fill the embeddings corresponding to the images. Anything that is not `text_positions` needs filling (#29835)
|
| 52 |
+
image_to_overwrite = np.full((batch_size, max_embed_dim), True)
|
| 53 |
+
image_to_overwrite[batch_indices, text_to_overwrite] = False
|
| 54 |
+
image_to_overwrite &= image_to_overwrite.cumsum(-1) - 1 >= nb_image_pad[:, None]
|
| 55 |
+
|
| 56 |
+
final_embedding[image_to_overwrite] = image_features.reshape(-1, embed_dim)
|
| 57 |
+
final_attention_mask = np.logical_or(final_attention_mask, image_to_overwrite).astype(final_attention_mask.dtype)
|
| 58 |
+
position_ids = final_attention_mask.cumsum(axis=-1) - 1
|
| 59 |
+
position_ids = np.where(final_attention_mask == 0, 1, position_ids)
|
| 60 |
+
|
| 61 |
+
# 6. Mask out the embedding at padding positions, as we later use the past_key_value value to determine the non-attended tokens.
|
| 62 |
+
batch_indices, pad_indices = np.where(input_ids == pad_token_id)
|
| 63 |
+
indices_to_mask = new_token_positions[batch_indices, pad_indices]
|
| 64 |
+
final_embedding[batch_indices, indices_to_mask] = 0
|
| 65 |
+
|
| 66 |
+
return final_embedding, final_attention_mask, position_ids
|
| 67 |
+
|
| 68 |
+
# Load model and processor
|
| 69 |
+
|
| 70 |
+
def describe_image(image):
|
| 71 |
+
if(image.mode != 'RGB'):
|
| 72 |
+
image = image.convert('RGB')
|
| 73 |
+
conversation = [
|
| 74 |
+
{
|
| 75 |
+
"role": "system",
|
| 76 |
+
"content": "You are a helpful assistant who describes image."
|
| 77 |
+
},
|
| 78 |
+
{
|
| 79 |
+
"role": "user",
|
| 80 |
+
"content": [
|
| 81 |
+
{"type": "text", "text": "Describe this image in about 200 words and explain each and every element in full detail"},
|
| 82 |
+
{"type": "image"},
|
| 83 |
+
],
|
| 84 |
+
},
|
| 85 |
+
]
|
| 86 |
+
|
| 87 |
+
# Apply chat template
|
| 88 |
+
prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)
|
| 89 |
+
|
| 90 |
+
# Preprocess the image and text
|
| 91 |
+
inputs = processor(images=image, text=prompt, return_tensors="np")
|
| 92 |
+
vision_input_name = vision_encoder_session.get_inputs()[0].name
|
| 93 |
+
vision_output_name = vision_encoder_session.get_outputs()[0].name
|
| 94 |
+
vision_features = vision_encoder_session.run([vision_output_name], {vision_input_name: inputs["pixel_values"]})[0]
|
| 95 |
+
|
| 96 |
+
# print('Total Time for Image Features Making ', time.time() - start)
|
| 97 |
+
|
| 98 |
+
# Tokens for the prompt
|
| 99 |
+
input_ids, attention_mask = inputs["input_ids"], inputs["attention_mask"]
|
| 100 |
+
|
| 101 |
+
# Prepare inputs
|
| 102 |
+
sequence_length = input_ids.shape[1]
|
| 103 |
+
batch_size = 1
|
| 104 |
+
num_layers = 24
|
| 105 |
+
head_dim = 64
|
| 106 |
+
num_heads = 16
|
| 107 |
+
pad_token_id = tokenizer.pad_token_id
|
| 108 |
+
past_sequence_length = 0 # Set to 0 for the initial pass
|
| 109 |
+
special_image_token_id = 151646
|
| 110 |
+
|
| 111 |
+
# Position IDs
|
| 112 |
+
position_ids = np.arange(sequence_length, dtype=np.int64).reshape(1, -1)
|
| 113 |
+
|
| 114 |
+
# Past Key Values
|
| 115 |
+
past_key_values = {
|
| 116 |
+
f"past_key_values.{i}.key": np.zeros((batch_size, num_heads, past_sequence_length, head_dim), dtype=np.float32)
|
| 117 |
+
for i in range(num_layers)
|
| 118 |
+
}
|
| 119 |
+
past_key_values.update({
|
| 120 |
+
f"past_key_values.{i}.value": np.zeros((batch_size, num_heads, past_sequence_length, head_dim), dtype=np.float32)
|
| 121 |
+
for i in range(num_layers)
|
| 122 |
+
})
|
| 123 |
+
|
| 124 |
+
# Run embed tokens
|
| 125 |
+
embed_input_name = embed_tokens_session.get_inputs()[0].name
|
| 126 |
+
embed_output_name = embed_tokens_session.get_outputs()[0].name
|
| 127 |
+
token_embeddings = embed_tokens_session.run([embed_output_name], {embed_input_name: input_ids})[0]
|
| 128 |
+
|
| 129 |
+
# Combine token embeddings and vision features
|
| 130 |
+
combined_embeddings, attention_mask, position_ids = merge_input_ids_with_image_features(vision_features, token_embeddings, input_ids, attention_mask,pad_token_id,special_image_token_id)
|
| 131 |
+
combined_len = combined_embeddings.shape[1]
|
| 132 |
+
|
| 133 |
+
# Combine all inputs
|
| 134 |
+
decoder_inputs = {
|
| 135 |
+
"attention_mask": attention_mask,
|
| 136 |
+
"position_ids": position_ids,
|
| 137 |
+
"inputs_embeds": combined_embeddings,
|
| 138 |
+
**past_key_values
|
| 139 |
+
}
|
| 140 |
+
|
| 141 |
+
# Print input shapes
|
| 142 |
+
for name, value in decoder_inputs.items():
|
| 143 |
+
print(f"{name} shape: {value.shape} dtype {value.dtype}")
|
| 144 |
+
|
| 145 |
+
# Run the decoder
|
| 146 |
+
decoder_input_names = [input.name for input in decoder_session.get_inputs()]
|
| 147 |
+
decoder_output_name = decoder_session.get_outputs()[0].name
|
| 148 |
+
names = [n.name for n in decoder_session.get_outputs()]
|
| 149 |
+
outputs = decoder_session.run(names, {name: decoder_inputs[name] for name in decoder_input_names if name in decoder_inputs})
|
| 150 |
+
|
| 151 |
+
# ... (previous code remains the same until after the decoder run)
|
| 152 |
+
# print(f"Outputs shape: {outputs[0].shape}")
|
| 153 |
+
# print(f"Outputs type: {outputs[0].dtype}")
|
| 154 |
+
|
| 155 |
+
# Process outputs (decode tokens to text)
|
| 156 |
+
generated_tokens = []
|
| 157 |
+
eos_token_id = tokenizer.eos_token_id
|
| 158 |
+
max_new_tokens = 2048
|
| 159 |
+
|
| 160 |
+
for i in range(max_new_tokens):
|
| 161 |
+
logits = outputs[0]
|
| 162 |
+
past_kv = outputs[1:]
|
| 163 |
+
logits_next_token = logits[:, -1]
|
| 164 |
+
token_id = np.argmax(logits_next_token)
|
| 165 |
+
|
| 166 |
+
if token_id == eos_token_id:
|
| 167 |
+
break
|
| 168 |
+
|
| 169 |
+
generated_tokens.append(token_id)
|
| 170 |
+
|
| 171 |
+
# Prepare input for next token generation
|
| 172 |
+
new_input_embeds = embed_tokens_session.run([embed_output_name], {embed_input_name: np.array([[token_id]])})[0]
|
| 173 |
+
|
| 174 |
+
past_key_values = {name.replace("present", "past_key_values"): value for name, value in zip(names[1:], outputs[1:])}
|
| 175 |
+
|
| 176 |
+
attention_mask = np.ones((1, combined_len + i + 1), dtype=np.int64)
|
| 177 |
+
position_ids = np.arange(combined_len + i + 1, dtype=np.int64).reshape(1, -1)[:, -1:]
|
| 178 |
+
|
| 179 |
+
decoder_inputs = {
|
| 180 |
+
"attention_mask": attention_mask,
|
| 181 |
+
"position_ids": position_ids,
|
| 182 |
+
"inputs_embeds": new_input_embeds,
|
| 183 |
+
**past_key_values
|
| 184 |
+
}
|
| 185 |
+
|
| 186 |
+
outputs = decoder_session.run(names, {name: decoder_inputs[name] for name in decoder_input_names if name in decoder_inputs})
|
| 187 |
+
|
| 188 |
+
# Convert to list of integers
|
| 189 |
+
token_ids = [int(token) for token in generated_tokens]
|
| 190 |
+
|
| 191 |
+
print(f"Generated token IDs: {token_ids}")
|
| 192 |
+
|
| 193 |
+
# Decode tokens one by one
|
| 194 |
+
decoded_tokens = [tokenizer.decode([token]) for token in token_ids]
|
| 195 |
+
print(f"Decoded tokens: {decoded_tokens}")
|
| 196 |
+
|
| 197 |
+
# Full decoded output
|
| 198 |
+
decoded_output = tokenizer.decode(token_ids, skip_special_tokens=True)
|
| 199 |
+
return decoded_output
|
| 200 |
+
|
| 201 |
+
# Create Gradio interface
|
| 202 |
+
interface = gr.Interface(
|
| 203 |
+
fn=describe_image,
|
| 204 |
+
inputs=gr.Image(type="pil"),
|
| 205 |
+
outputs=gr.Textbox(lines=5, placeholder="Description will appear here"),
|
| 206 |
+
title="Image Description Generator",
|
| 207 |
+
description="Upload an image to get a detailed description."
|
| 208 |
+
)
|
| 209 |
+
|
| 210 |
+
# Enable API
|
| 211 |
+
interface.launch(share=True,show_error=True,debug=True)
|
packages.txt
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
wget
|
requirements.txt
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
onnxruntime
|
| 2 |
+
onnx
|
| 3 |
+
gradio
|
| 4 |
+
Pillow
|
| 5 |
+
torch
|
| 6 |
+
transformers
|
| 7 |
+
numpy
|