File size: 6,389 Bytes
7417a6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import random
from pathlib import Path
from typing import Dict, List, Tuple
import torch
from torch.utils.data import Dataset
import stempeg
import soundfile as sf
import math
import numpy as np

# ============================================================================
# Data Loader
# ============================================================================

def get_random_prompt(stem_name: str) -> str:
    """Get a random text prompt for a given stem."""
    return random.choice(STEM_PROMPTS[stem_name])


# Text Prompt Templates
STEM_PROMPTS: Dict[str, List[str]] = {
    "drums": ["drums", "drum kit", "percussion", "the drums"],
    "bass": ["bass", "bass guitar", "the bass", "bass line"],
    "other": ["other instruments", "accompaniment", "instruments"],
    "vocals": ["vocals", "voice", "singing", "the vocals"],
}

PROMPT_TO_STEM: Dict[str, str] = {
    prompt: stem
    for stem, prompts in STEM_PROMPTS.items()
    for prompt in prompts
}

STEM_NAME_TO_INDEX = {"drums": 0, "bass": 1, "other": 2, "vocals": 3}


class MusDBStemDataset(Dataset):
    def __init__(
            self,
            root_dir: str,
            segment_samples: int,
            sample_rate: int = 44100,
            channels: int = 2,
            random_segments: bool = True,
            augment: bool = True,
    ):
        self.root_dir = Path(root_dir)
        self.segment_samples = segment_samples
        self.sample_rate = sample_rate
        self.channels = channels
        self.random_segments = random_segments
        self.augment = augment

        self.stem_names = ["drums", "bass", "other", "vocals"]

        self.files = list(self.root_dir.glob("*.stem.mp4"))
        if not self.files:
            raise ValueError(f"No .stem.mp4 files found in {root_dir}")
        
        # Compute number of examples
        self.index_map      = []                        # (file_idx, stem_idx, segment_idx)
        #self.sample_lengths = [0] * len(self.files)     # total samples per file
        for file_idx, file in enumerate(self.files):
            info = stempeg.Info(str(file))
            total_samples = info.duration(0) * info.sample_rate(0)      # 0 - using mixture stream as reference
            #self.sample_lengths[file_idx] = int(total_samples)
            num_segments = math.ceil(total_samples / segment_samples)

            # Build index map: for each stem, each segment
            for stem_idx in range(len(self.stem_names)):
                for seg in range(num_segments):
                    self.index_map.append((file_idx, stem_idx, seg))

        print(f"Found {len(self.files)} tracks, total dataset items: {len(self.index_map)}")

    def __len__(self) -> int:
        return len(self.index_map)

    def _load_stems(self, filepath: Path) -> np.ndarray:
        """Load all stems from a .stem.mp4 file."""
        stems, rate = stempeg.read_stems(str(filepath))
        # stems shape: (num_stems, samples, channels)
        # [mix, drums, bass, other, vocals]
        return stems

    def _extract_random_segment(self, stems: np.ndarray) -> np.ndarray:
        """Extract the same random segment from all stems."""
        total_samples = stems.shape[1]  # stems: (num_stems, samples, channels)

        if total_samples <= self.segment_samples:
            # Pad if too short
            pad_amount = self.segment_samples - total_samples
            stems = np.pad(stems, ((0, 0), (0, pad_amount), (0, 0)), mode='constant')
        else:
            # Random start position (same for all stems)
            if self.random_segments:
                start = random.randint(0, total_samples - self.segment_samples)
            else:
                start = 0
            stems = stems[:, start:start + self.segment_samples, :]

        return stems
    
    def _extract_segment(self, stems: np.ndarray, seg_idx: int) -> np.ndarray:
        total_samples = stems.shape[1]

        if self.random_segments:
            # fallback to random segment extractor
            return self._extract_random_segment(stems)

        start = seg_idx * self.segment_samples
        end = start + self.segment_samples

        if end <= total_samples:
            return stems[:, start:end, :]
        else:
            # Last segment may need padding
            pad_amount = end - total_samples
            seg = stems[:, start:, :]
            seg = np.pad(seg, ((0, 0),(0, pad_amount), (0, 0)), mode="constant")
            return seg

    def _augment(self, mixture: np.ndarray, target: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
        """Apply data augmentation."""
        if random.random() < 0.5:
            gain = random.uniform(0.7, 1.3)
            mixture = mixture * gain
            target = target * gain

        if random.random() < 0.3 and mixture.shape[-1] == 2:
            mixture = mixture[:, ::-1].copy()
            target = target[:, ::-1].copy()

        return mixture, target

    def __getitem__(self, idx: int) -> Dict[str, torch.Tensor | str]:
        file_idx, stem_idx, seg_idx = self.index_map[idx]

        filepath = self.files[file_idx]
        stems = self._load_stems(filepath)

        # deterministic segment selection
        stems = self._extract_segment(stems, seg_idx)

        mixture = stems[0]               # (T, C)
        target  = stems[stem_idx+1]      # (T, C)

        if self.augment:
            mixture, target = self._augment(mixture, target)

        # -> (C, T)
        mixture = torch.from_numpy(mixture.T).float()
        target  = torch.from_numpy(target.T).float()

        # ensure stereo
        if mixture.shape[0] == 1:
            mixture = mixture.repeat(2, 1)
            target  = target.repeat(2, 1)

        prompt = get_random_prompt(self.stem_names[stem_idx])

        return {
            "mixture": mixture,
            "target": target,
            "prompt": prompt,
            "stem_name": self.stem_names[stem_idx],
            "file_idx": file_idx,
            "segment_idx": seg_idx,
        }


def collate_fn(batch: List[Dict]) -> Dict[str, torch.Tensor | List[str]]:
    """Custom collate function."""
    return {
        "mixture": torch.stack([item["mixture"] for item in batch]),
        "target": torch.stack([item["target"] for item in batch]),
        "prompt": [item["prompt"] for item in batch],
        "stem_name": [item["stem_name"] for item in batch],
    }