File size: 32,352 Bytes
7417a6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
Loading pretrained HTDemucs...
Loading CLAP model...
Model Summary:
AudioTextHTDemucs(
  (htdemucs): HTDemucs(
    (encoder): ModuleList(
      (0): HEncLayer(
        (conv): Conv2d(4, 48, kernel_size=(8, 1), stride=(4, 1), padding=(2, 0))
        (norm1): Identity()
        (rewrite): Conv2d(48, 96, kernel_size=(1, 1), stride=(1, 1))
        (norm2): Identity()
        (dconv): DConv(
          (layers): ModuleList(
            (0): Sequential(
              (0): Conv1d(48, 6, kernel_size=(3,), stride=(1,), padding=(1,))
              (1): GroupNorm(1, 6, eps=1e-05, affine=True)
              (2): GELU(approximate='none')
              (3): Conv1d(6, 96, kernel_size=(1,), stride=(1,))
              (4): GroupNorm(1, 96, eps=1e-05, affine=True)
              (5): GLU(dim=1)
              (6): LayerScale()
            )
            (1): Sequential(
              (0): Conv1d(48, 6, kernel_size=(3,), stride=(1,), padding=(2,), dilation=(2,))
              (1): GroupNorm(1, 6, eps=1e-05, affine=True)
              (2): GELU(approximate='none')
              (3): Conv1d(6, 96, kernel_size=(1,), stride=(1,))
              (4): GroupNorm(1, 96, eps=1e-05, affine=True)
              (5): GLU(dim=1)
              (6): LayerScale()
            )
          )
        )
      )
      (1): HEncLayer(
        (conv): Conv2d(48, 96, kernel_size=(8, 1), stride=(4, 1), padding=(2, 0))
        (norm1): Identity()
        (rewrite): Conv2d(96, 192, kernel_size=(1, 1), stride=(1, 1))
        (norm2): Identity()
        (dconv): DConv(
          (layers): ModuleList(
            (0): Sequential(
              (0): Conv1d(96, 12, kernel_size=(3,), stride=(1,), padding=(1,))
              (1): GroupNorm(1, 12, eps=1e-05, affine=True)
              (2): GELU(approximate='none')
              (3): Conv1d(12, 192, kernel_size=(1,), stride=(1,))
              (4): GroupNorm(1, 192, eps=1e-05, affine=True)
              (5): GLU(dim=1)
              (6): LayerScale()
            )
            (1): Sequential(
              (0): Conv1d(96, 12, kernel_size=(3,), stride=(1,), padding=(2,), dilation=(2,))
              (1): GroupNorm(1, 12, eps=1e-05, affine=True)
              (2): GELU(approximate='none')
              (3): Conv1d(12, 192, kernel_size=(1,), stride=(1,))
              (4): GroupNorm(1, 192, eps=1e-05, affine=True)
              (5): GLU(dim=1)
              (6): LayerScale()
            )
          )
        )
      )
      (2): HEncLayer(
        (conv): Conv2d(96, 192, kernel_size=(8, 1), stride=(4, 1), padding=(2, 0))
        (norm1): Identity()
        (rewrite): Conv2d(192, 384, kernel_size=(1, 1), stride=(1, 1))
        (norm2): Identity()
        (dconv): DConv(
          (layers): ModuleList(
            (0): Sequential(
              (0): Conv1d(192, 24, kernel_size=(3,), stride=(1,), padding=(1,))
              (1): GroupNorm(1, 24, eps=1e-05, affine=True)
              (2): GELU(approximate='none')
              (3): Conv1d(24, 384, kernel_size=(1,), stride=(1,))
              (4): GroupNorm(1, 384, eps=1e-05, affine=True)
              (5): GLU(dim=1)
              (6): LayerScale()
            )
            (1): Sequential(
              (0): Conv1d(192, 24, kernel_size=(3,), stride=(1,), padding=(2,), dilation=(2,))
              (1): GroupNorm(1, 24, eps=1e-05, affine=True)
              (2): GELU(approximate='none')
              (3): Conv1d(24, 384, kernel_size=(1,), stride=(1,))
              (4): GroupNorm(1, 384, eps=1e-05, affine=True)
              (5): GLU(dim=1)
              (6): LayerScale()
            )
          )
        )
      )
      (3): HEncLayer(
        (conv): Conv2d(192, 384, kernel_size=(8, 1), stride=(4, 1), padding=(2, 0))
        (norm1): Identity()
        (rewrite): Conv2d(384, 768, kernel_size=(1, 1), stride=(1, 1))
        (norm2): Identity()
        (dconv): DConv(
          (layers): ModuleList(
            (0): Sequential(
              (0): Conv1d(384, 48, kernel_size=(3,), stride=(1,), padding=(1,))
              (1): GroupNorm(1, 48, eps=1e-05, affine=True)
              (2): GELU(approximate='none')
              (3): Conv1d(48, 768, kernel_size=(1,), stride=(1,))
              (4): GroupNorm(1, 768, eps=1e-05, affine=True)
              (5): GLU(dim=1)
              (6): LayerScale()
            )
            (1): Sequential(
              (0): Conv1d(384, 48, kernel_size=(3,), stride=(1,), padding=(2,), dilation=(2,))
              (1): GroupNorm(1, 48, eps=1e-05, affine=True)
              (2): GELU(approximate='none')
              (3): Conv1d(48, 768, kernel_size=(1,), stride=(1,))
              (4): GroupNorm(1, 768, eps=1e-05, affine=True)
              (5): GLU(dim=1)
              (6): LayerScale()
            )
          )
        )
      )
    )
    (decoder): ModuleList(
      (0): HDecLayer(
        (conv_tr): ConvTranspose2d(384, 192, kernel_size=(8, 1), stride=(4, 1))
        (norm2): Identity()
        (rewrite): Conv2d(384, 768, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (norm1): Identity()
        (dconv): DConv(
          (layers): ModuleList(
            (0): Sequential(
              (0): Conv1d(384, 48, kernel_size=(3,), stride=(1,), padding=(1,))
              (1): GroupNorm(1, 48, eps=1e-05, affine=True)
              (2): GELU(approximate='none')
              (3): Conv1d(48, 768, kernel_size=(1,), stride=(1,))
              (4): GroupNorm(1, 768, eps=1e-05, affine=True)
              (5): GLU(dim=1)
              (6): LayerScale()
            )
            (1): Sequential(
              (0): Conv1d(384, 48, kernel_size=(3,), stride=(1,), padding=(2,), dilation=(2,))
              (1): GroupNorm(1, 48, eps=1e-05, affine=True)
              (2): GELU(approximate='none')
              (3): Conv1d(48, 768, kernel_size=(1,), stride=(1,))
              (4): GroupNorm(1, 768, eps=1e-05, affine=True)
              (5): GLU(dim=1)
              (6): LayerScale()
            )
          )
        )
      )
      (1): HDecLayer(
        (conv_tr): ConvTranspose2d(192, 96, kernel_size=(8, 1), stride=(4, 1))
        (norm2): Identity()
        (rewrite): Conv2d(192, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (norm1): Identity()
        (dconv): DConv(
          (layers): ModuleList(
            (0): Sequential(
              (0): Conv1d(192, 24, kernel_size=(3,), stride=(1,), padding=(1,))
              (1): GroupNorm(1, 24, eps=1e-05, affine=True)
              (2): GELU(approximate='none')
              (3): Conv1d(24, 384, kernel_size=(1,), stride=(1,))
              (4): GroupNorm(1, 384, eps=1e-05, affine=True)
              (5): GLU(dim=1)
              (6): LayerScale()
            )
            (1): Sequential(
              (0): Conv1d(192, 24, kernel_size=(3,), stride=(1,), padding=(2,), dilation=(2,))
              (1): GroupNorm(1, 24, eps=1e-05, affine=True)
              (2): GELU(approximate='none')
              (3): Conv1d(24, 384, kernel_size=(1,), stride=(1,))
              (4): GroupNorm(1, 384, eps=1e-05, affine=True)
              (5): GLU(dim=1)
              (6): LayerScale()
            )
          )
        )
      )
      (2): HDecLayer(
        (conv_tr): ConvTranspose2d(96, 48, kernel_size=(8, 1), stride=(4, 1))
        (norm2): Identity()
        (rewrite): Conv2d(96, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (norm1): Identity()
        (dconv): DConv(
          (layers): ModuleList(
            (0): Sequential(
              (0): Conv1d(96, 12, kernel_size=(3,), stride=(1,), padding=(1,))
              (1): GroupNorm(1, 12, eps=1e-05, affine=True)
              (2): GELU(approximate='none')
              (3): Conv1d(12, 192, kernel_size=(1,), stride=(1,))
              (4): GroupNorm(1, 192, eps=1e-05, affine=True)
              (5): GLU(dim=1)
              (6): LayerScale()
            )
            (1): Sequential(
              (0): Conv1d(96, 12, kernel_size=(3,), stride=(1,), padding=(2,), dilation=(2,))
              (1): GroupNorm(1, 12, eps=1e-05, affine=True)
              (2): GELU(approximate='none')
              (3): Conv1d(12, 192, kernel_size=(1,), stride=(1,))
              (4): GroupNorm(1, 192, eps=1e-05, affine=True)
              (5): GLU(dim=1)
              (6): LayerScale()
            )
          )
        )
      )
      (3): HDecLayer(
        (conv_tr): ConvTranspose2d(48, 16, kernel_size=(8, 1), stride=(4, 1))
        (norm2): Identity()
        (rewrite): Conv2d(48, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
        (norm1): Identity()
        (dconv): DConv(
          (layers): ModuleList(
            (0): Sequential(
              (0): Conv1d(48, 6, kernel_size=(3,), stride=(1,), padding=(1,))
              (1): GroupNorm(1, 6, eps=1e-05, affine=True)
              (2): GELU(approximate='none')
              (3): Conv1d(6, 96, kernel_size=(1,), stride=(1,))
              (4): GroupNorm(1, 96, eps=1e-05, affine=True)
              (5): GLU(dim=1)
              (6): LayerScale()
            )
            (1): Sequential(
              (0): Conv1d(48, 6, kernel_size=(3,), stride=(1,), padding=(2,), dilation=(2,))
              (1): GroupNorm(1, 6, eps=1e-05, affine=True)
              (2): GELU(approximate='none')
              (3): Conv1d(6, 96, kernel_size=(1,), stride=(1,))
              (4): GroupNorm(1, 96, eps=1e-05, affine=True)
              (5): GLU(dim=1)
              (6): LayerScale()
            )
          )
        )
      )
    )
    (tencoder): ModuleList(
      (0): HEncLayer(
        (conv): Conv1d(2, 48, kernel_size=(8,), stride=(4,), padding=(2,))
        (norm1): Identity()
        (rewrite): Conv1d(48, 96, kernel_size=(1,), stride=(1,))
        (norm2): Identity()
        (dconv): DConv(
          (layers): ModuleList(
            (0): Sequential(
              (0): Conv1d(48, 6, kernel_size=(3,), stride=(1,), padding=(1,))
              (1): GroupNorm(1, 6, eps=1e-05, affine=True)
              (2): GELU(approximate='none')
              (3): Conv1d(6, 96, kernel_size=(1,), stride=(1,))
              (4): GroupNorm(1, 96, eps=1e-05, affine=True)
              (5): GLU(dim=1)
              (6): LayerScale()
            )
            (1): Sequential(
              (0): Conv1d(48, 6, kernel_size=(3,), stride=(1,), padding=(2,), dilation=(2,))
              (1): GroupNorm(1, 6, eps=1e-05, affine=True)
              (2): GELU(approximate='none')
              (3): Conv1d(6, 96, kernel_size=(1,), stride=(1,))
              (4): GroupNorm(1, 96, eps=1e-05, affine=True)
              (5): GLU(dim=1)
              (6): LayerScale()
            )
          )
        )
      )
      (1): HEncLayer(
        (conv): Conv1d(48, 96, kernel_size=(8,), stride=(4,), padding=(2,))
        (norm1): Identity()
        (rewrite): Conv1d(96, 192, kernel_size=(1,), stride=(1,))
        (norm2): Identity()
        (dconv): DConv(
          (layers): ModuleList(
            (0): Sequential(
              (0): Conv1d(96, 12, kernel_size=(3,), stride=(1,), padding=(1,))
              (1): GroupNorm(1, 12, eps=1e-05, affine=True)
              (2): GELU(approximate='none')
              (3): Conv1d(12, 192, kernel_size=(1,), stride=(1,))
              (4): GroupNorm(1, 192, eps=1e-05, affine=True)
              (5): GLU(dim=1)
              (6): LayerScale()
            )
            (1): Sequential(
              (0): Conv1d(96, 12, kernel_size=(3,), stride=(1,), padding=(2,), dilation=(2,))
              (1): GroupNorm(1, 12, eps=1e-05, affine=True)
              (2): GELU(approximate='none')
              (3): Conv1d(12, 192, kernel_size=(1,), stride=(1,))
              (4): GroupNorm(1, 192, eps=1e-05, affine=True)
              (5): GLU(dim=1)
              (6): LayerScale()
            )
          )
        )
      )
      (2): HEncLayer(
        (conv): Conv1d(96, 192, kernel_size=(8,), stride=(4,), padding=(2,))
        (norm1): Identity()
        (rewrite): Conv1d(192, 384, kernel_size=(1,), stride=(1,))
        (norm2): Identity()
        (dconv): DConv(
          (layers): ModuleList(
            (0): Sequential(
              (0): Conv1d(192, 24, kernel_size=(3,), stride=(1,), padding=(1,))
              (1): GroupNorm(1, 24, eps=1e-05, affine=True)
              (2): GELU(approximate='none')
              (3): Conv1d(24, 384, kernel_size=(1,), stride=(1,))
              (4): GroupNorm(1, 384, eps=1e-05, affine=True)
              (5): GLU(dim=1)
              (6): LayerScale()
            )
            (1): Sequential(
              (0): Conv1d(192, 24, kernel_size=(3,), stride=(1,), padding=(2,), dilation=(2,))
              (1): GroupNorm(1, 24, eps=1e-05, affine=True)
              (2): GELU(approximate='none')
              (3): Conv1d(24, 384, kernel_size=(1,), stride=(1,))
              (4): GroupNorm(1, 384, eps=1e-05, affine=True)
              (5): GLU(dim=1)
              (6): LayerScale()
            )
          )
        )
      )
      (3): HEncLayer(
        (conv): Conv1d(192, 384, kernel_size=(8,), stride=(4,), padding=(2,))
        (norm1): Identity()
        (rewrite): Conv1d(384, 768, kernel_size=(1,), stride=(1,))
        (norm2): Identity()
        (dconv): DConv(
          (layers): ModuleList(
            (0): Sequential(
              (0): Conv1d(384, 48, kernel_size=(3,), stride=(1,), padding=(1,))
              (1): GroupNorm(1, 48, eps=1e-05, affine=True)
              (2): GELU(approximate='none')
              (3): Conv1d(48, 768, kernel_size=(1,), stride=(1,))
              (4): GroupNorm(1, 768, eps=1e-05, affine=True)
              (5): GLU(dim=1)
              (6): LayerScale()
            )
            (1): Sequential(
              (0): Conv1d(384, 48, kernel_size=(3,), stride=(1,), padding=(2,), dilation=(2,))
              (1): GroupNorm(1, 48, eps=1e-05, affine=True)
              (2): GELU(approximate='none')
              (3): Conv1d(48, 768, kernel_size=(1,), stride=(1,))
              (4): GroupNorm(1, 768, eps=1e-05, affine=True)
              (5): GLU(dim=1)
              (6): LayerScale()
            )
          )
        )
      )
    )
    (tdecoder): ModuleList(
      (0): HDecLayer(
        (conv_tr): ConvTranspose1d(384, 192, kernel_size=(8,), stride=(4,))
        (norm2): Identity()
        (rewrite): Conv1d(384, 768, kernel_size=(3,), stride=(1,), padding=(1,))
        (norm1): Identity()
        (dconv): DConv(
          (layers): ModuleList(
            (0): Sequential(
              (0): Conv1d(384, 48, kernel_size=(3,), stride=(1,), padding=(1,))
              (1): GroupNorm(1, 48, eps=1e-05, affine=True)
              (2): GELU(approximate='none')
              (3): Conv1d(48, 768, kernel_size=(1,), stride=(1,))
              (4): GroupNorm(1, 768, eps=1e-05, affine=True)
              (5): GLU(dim=1)
              (6): LayerScale()
            )
            (1): Sequential(
              (0): Conv1d(384, 48, kernel_size=(3,), stride=(1,), padding=(2,), dilation=(2,))
              (1): GroupNorm(1, 48, eps=1e-05, affine=True)
              (2): GELU(approximate='none')
              (3): Conv1d(48, 768, kernel_size=(1,), stride=(1,))
              (4): GroupNorm(1, 768, eps=1e-05, affine=True)
              (5): GLU(dim=1)
              (6): LayerScale()
            )
          )
        )
      )
      (1): HDecLayer(
        (conv_tr): ConvTranspose1d(192, 96, kernel_size=(8,), stride=(4,))
        (norm2): Identity()
        (rewrite): Conv1d(192, 384, kernel_size=(3,), stride=(1,), padding=(1,))
        (norm1): Identity()
        (dconv): DConv(
          (layers): ModuleList(
            (0): Sequential(
              (0): Conv1d(192, 24, kernel_size=(3,), stride=(1,), padding=(1,))
              (1): GroupNorm(1, 24, eps=1e-05, affine=True)
              (2): GELU(approximate='none')
              (3): Conv1d(24, 384, kernel_size=(1,), stride=(1,))
              (4): GroupNorm(1, 384, eps=1e-05, affine=True)
              (5): GLU(dim=1)
              (6): LayerScale()
            )
            (1): Sequential(
              (0): Conv1d(192, 24, kernel_size=(3,), stride=(1,), padding=(2,), dilation=(2,))
              (1): GroupNorm(1, 24, eps=1e-05, affine=True)
              (2): GELU(approximate='none')
              (3): Conv1d(24, 384, kernel_size=(1,), stride=(1,))
              (4): GroupNorm(1, 384, eps=1e-05, affine=True)
              (5): GLU(dim=1)
              (6): LayerScale()
            )
          )
        )
      )
      (2): HDecLayer(
        (conv_tr): ConvTranspose1d(96, 48, kernel_size=(8,), stride=(4,))
        (norm2): Identity()
        (rewrite): Conv1d(96, 192, kernel_size=(3,), stride=(1,), padding=(1,))
        (norm1): Identity()
        (dconv): DConv(
          (layers): ModuleList(
            (0): Sequential(
              (0): Conv1d(96, 12, kernel_size=(3,), stride=(1,), padding=(1,))
              (1): GroupNorm(1, 12, eps=1e-05, affine=True)
              (2): GELU(approximate='none')
              (3): Conv1d(12, 192, kernel_size=(1,), stride=(1,))
              (4): GroupNorm(1, 192, eps=1e-05, affine=True)
              (5): GLU(dim=1)
              (6): LayerScale()
            )
            (1): Sequential(
              (0): Conv1d(96, 12, kernel_size=(3,), stride=(1,), padding=(2,), dilation=(2,))
              (1): GroupNorm(1, 12, eps=1e-05, affine=True)
              (2): GELU(approximate='none')
              (3): Conv1d(12, 192, kernel_size=(1,), stride=(1,))
              (4): GroupNorm(1, 192, eps=1e-05, affine=True)
              (5): GLU(dim=1)
              (6): LayerScale()
            )
          )
        )
      )
      (3): HDecLayer(
        (conv_tr): ConvTranspose1d(48, 8, kernel_size=(8,), stride=(4,))
        (norm2): Identity()
        (rewrite): Conv1d(48, 96, kernel_size=(3,), stride=(1,), padding=(1,))
        (norm1): Identity()
        (dconv): DConv(
          (layers): ModuleList(
            (0): Sequential(
              (0): Conv1d(48, 6, kernel_size=(3,), stride=(1,), padding=(1,))
              (1): GroupNorm(1, 6, eps=1e-05, affine=True)
              (2): GELU(approximate='none')
              (3): Conv1d(6, 96, kernel_size=(1,), stride=(1,))
              (4): GroupNorm(1, 96, eps=1e-05, affine=True)
              (5): GLU(dim=1)
              (6): LayerScale()
            )
            (1): Sequential(
              (0): Conv1d(48, 6, kernel_size=(3,), stride=(1,), padding=(2,), dilation=(2,))
              (1): GroupNorm(1, 6, eps=1e-05, affine=True)
              (2): GELU(approximate='none')
              (3): Conv1d(6, 96, kernel_size=(1,), stride=(1,))
              (4): GroupNorm(1, 96, eps=1e-05, affine=True)
              (5): GLU(dim=1)
              (6): LayerScale()
            )
          )
        )
      )
    )
    (freq_emb): ScaledEmbedding(
      (embedding): Embedding(512, 48)
    )
    (channel_upsampler): Conv1d(384, 512, kernel_size=(1,), stride=(1,))
    (channel_downsampler): Conv1d(512, 384, kernel_size=(1,), stride=(1,))
    (channel_upsampler_t): Conv1d(384, 512, kernel_size=(1,), stride=(1,))
    (channel_downsampler_t): Conv1d(512, 384, kernel_size=(1,), stride=(1,))
    (crosstransformer): CrossTransformerEncoder(
      (norm_in): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
      (norm_in_t): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
      (layers): ModuleList(
        (0): MyTransformerEncoderLayer(
          (self_attn): MultiheadAttention(
            (out_proj): NonDynamicallyQuantizableLinear(in_features=512, out_features=512, bias=True)
          )
          (linear1): Linear(in_features=512, out_features=2048, bias=True)
          (dropout): Dropout(p=0.02, inplace=False)
          (linear2): Linear(in_features=2048, out_features=512, bias=True)
          (norm1): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
          (norm2): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
          (dropout1): Dropout(p=0.02, inplace=False)
          (dropout2): Dropout(p=0.02, inplace=False)
          (norm_out): MyGroupNorm(1, 512, eps=1e-05, affine=True)
          (gamma_1): LayerScale()
          (gamma_2): LayerScale()
        )
        (1): CrossTransformerEncoderLayer(
          (cross_attn): MultiheadAttention(
            (out_proj): NonDynamicallyQuantizableLinear(in_features=512, out_features=512, bias=True)
          )
          (linear1): Linear(in_features=512, out_features=2048, bias=True)
          (dropout): Dropout(p=0.02, inplace=False)
          (linear2): Linear(in_features=2048, out_features=512, bias=True)
          (norm1): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
          (norm2): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
          (norm3): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
          (norm_out): MyGroupNorm(1, 512, eps=1e-05, affine=True)
          (gamma_1): LayerScale()
          (gamma_2): LayerScale()
          (dropout1): Dropout(p=0.02, inplace=False)
          (dropout2): Dropout(p=0.02, inplace=False)
        )
        (2): MyTransformerEncoderLayer(
          (self_attn): MultiheadAttention(
            (out_proj): NonDynamicallyQuantizableLinear(in_features=512, out_features=512, bias=True)
          )
          (linear1): Linear(in_features=512, out_features=2048, bias=True)
          (dropout): Dropout(p=0.02, inplace=False)
          (linear2): Linear(in_features=2048, out_features=512, bias=True)
          (norm1): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
          (norm2): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
          (dropout1): Dropout(p=0.02, inplace=False)
          (dropout2): Dropout(p=0.02, inplace=False)
          (norm_out): MyGroupNorm(1, 512, eps=1e-05, affine=True)
          (gamma_1): LayerScale()
          (gamma_2): LayerScale()
        )
        (3): CrossTransformerEncoderLayer(
          (cross_attn): MultiheadAttention(
            (out_proj): NonDynamicallyQuantizableLinear(in_features=512, out_features=512, bias=True)
          )
          (linear1): Linear(in_features=512, out_features=2048, bias=True)
          (dropout): Dropout(p=0.02, inplace=False)
          (linear2): Linear(in_features=2048, out_features=512, bias=True)
          (norm1): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
          (norm2): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
          (norm3): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
          (norm_out): MyGroupNorm(1, 512, eps=1e-05, affine=True)
          (gamma_1): LayerScale()
          (gamma_2): LayerScale()
          (dropout1): Dropout(p=0.02, inplace=False)
          (dropout2): Dropout(p=0.02, inplace=False)
        )
        (4): MyTransformerEncoderLayer(
          (self_attn): MultiheadAttention(
            (out_proj): NonDynamicallyQuantizableLinear(in_features=512, out_features=512, bias=True)
          )
          (linear1): Linear(in_features=512, out_features=2048, bias=True)
          (dropout): Dropout(p=0.02, inplace=False)
          (linear2): Linear(in_features=2048, out_features=512, bias=True)
          (norm1): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
          (norm2): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
          (dropout1): Dropout(p=0.02, inplace=False)
          (dropout2): Dropout(p=0.02, inplace=False)
          (norm_out): MyGroupNorm(1, 512, eps=1e-05, affine=True)
          (gamma_1): LayerScale()
          (gamma_2): LayerScale()
        )
      )
      (layers_t): ModuleList(
        (0): MyTransformerEncoderLayer(
          (self_attn): MultiheadAttention(
            (out_proj): NonDynamicallyQuantizableLinear(in_features=512, out_features=512, bias=True)
          )
          (linear1): Linear(in_features=512, out_features=2048, bias=True)
          (dropout): Dropout(p=0.02, inplace=False)
          (linear2): Linear(in_features=2048, out_features=512, bias=True)
          (norm1): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
          (norm2): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
          (dropout1): Dropout(p=0.02, inplace=False)
          (dropout2): Dropout(p=0.02, inplace=False)
          (norm_out): MyGroupNorm(1, 512, eps=1e-05, affine=True)
          (gamma_1): LayerScale()
          (gamma_2): LayerScale()
        )
        (1): CrossTransformerEncoderLayer(
          (cross_attn): MultiheadAttention(
            (out_proj): NonDynamicallyQuantizableLinear(in_features=512, out_features=512, bias=True)
          )
          (linear1): Linear(in_features=512, out_features=2048, bias=True)
          (dropout): Dropout(p=0.02, inplace=False)
          (linear2): Linear(in_features=2048, out_features=512, bias=True)
          (norm1): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
          (norm2): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
          (norm3): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
          (norm_out): MyGroupNorm(1, 512, eps=1e-05, affine=True)
          (gamma_1): LayerScale()
          (gamma_2): LayerScale()
          (dropout1): Dropout(p=0.02, inplace=False)
          (dropout2): Dropout(p=0.02, inplace=False)
        )
        (2): MyTransformerEncoderLayer(
          (self_attn): MultiheadAttention(
            (out_proj): NonDynamicallyQuantizableLinear(in_features=512, out_features=512, bias=True)
          )
          (linear1): Linear(in_features=512, out_features=2048, bias=True)
          (dropout): Dropout(p=0.02, inplace=False)
          (linear2): Linear(in_features=2048, out_features=512, bias=True)
          (norm1): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
          (norm2): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
          (dropout1): Dropout(p=0.02, inplace=False)
          (dropout2): Dropout(p=0.02, inplace=False)
          (norm_out): MyGroupNorm(1, 512, eps=1e-05, affine=True)
          (gamma_1): LayerScale()
          (gamma_2): LayerScale()
        )
        (3): CrossTransformerEncoderLayer(
          (cross_attn): MultiheadAttention(
            (out_proj): NonDynamicallyQuantizableLinear(in_features=512, out_features=512, bias=True)
          )
          (linear1): Linear(in_features=512, out_features=2048, bias=True)
          (dropout): Dropout(p=0.02, inplace=False)
          (linear2): Linear(in_features=2048, out_features=512, bias=True)
          (norm1): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
          (norm2): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
          (norm3): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
          (norm_out): MyGroupNorm(1, 512, eps=1e-05, affine=True)
          (gamma_1): LayerScale()
          (gamma_2): LayerScale()
          (dropout1): Dropout(p=0.02, inplace=False)
          (dropout2): Dropout(p=0.02, inplace=False)
        )
        (4): MyTransformerEncoderLayer(
          (self_attn): MultiheadAttention(
            (out_proj): NonDynamicallyQuantizableLinear(in_features=512, out_features=512, bias=True)
          )
          (linear1): Linear(in_features=512, out_features=2048, bias=True)
          (dropout): Dropout(p=0.02, inplace=False)
          (linear2): Linear(in_features=2048, out_features=512, bias=True)
          (norm1): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
          (norm2): LayerNorm((512,), eps=1e-05, elementwise_affine=True)
          (dropout1): Dropout(p=0.02, inplace=False)
          (dropout2): Dropout(p=0.02, inplace=False)
          (norm_out): MyGroupNorm(1, 512, eps=1e-05, affine=True)
          (gamma_1): LayerScale()
          (gamma_2): LayerScale()
        )
      )
    )
  )
  (clap): ClapTextModelWithProjection(
    (text_model): ClapTextModel(
      (embeddings): ClapTextEmbeddings(
        (word_embeddings): Embedding(50265, 768, padding_idx=1)
        (position_embeddings): Embedding(514, 768, padding_idx=1)
        (token_type_embeddings): Embedding(1, 768)
        (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
      (encoder): ClapTextEncoder(
        (layer): ModuleList(
          (0-11): 12 x ClapTextLayer(
            (attention): ClapTextAttention(
              (self): ClapTextSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): ClapTextSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): ClapTextIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): ClapTextOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
        )
      )
      (pooler): ClapTextPooler(
        (dense): Linear(in_features=768, out_features=768, bias=True)
        (activation): Tanh()
      )
    )
    (text_projection): ClapProjectionLayer(
      (linear1): Linear(in_features=768, out_features=512, bias=True)
      (activation): ReLU()
      (linear2): Linear(in_features=512, out_features=512, bias=True)
    )
  )
  (text_attn): TextCrossAttention(
    (q_proj): Linear(in_features=384, out_features=384, bias=True)
    (k_proj): Linear(in_features=512, out_features=384, bias=True)
    (v_proj): Linear(in_features=512, out_features=384, bias=True)
    (attn): MultiheadAttention(
      (out_proj): NonDynamicallyQuantizableLinear(in_features=384, out_features=384, bias=True)
    )
    (out_mlp): Sequential(
      (0): Linear(in_features=384, out_features=384, bias=True)
      (1): GELU(approximate='none')
      (2): Linear(in_features=384, out_features=384, bias=True)
    )
    (norm_q): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
    (norm_out): LayerNorm((384,), eps=1e-05, elementwise_affine=True)
  )
  (freq_decoder): FreqDecoder(
    (layers): ModuleList(
      (0): Sequential(
        (0): ConvTranspose2d(384, 192, kernel_size=(8, 1), stride=(4, 1), padding=(2, 0))
        (1): GroupNorm(1, 192, eps=1e-05, affine=True)
        (2): GELU(approximate='none')
      )
      (1): Sequential(
        (0): ConvTranspose2d(192, 96, kernel_size=(8, 1), stride=(4, 1), padding=(2, 0))
        (1): GroupNorm(1, 96, eps=1e-05, affine=True)
        (2): GELU(approximate='none')
      )
      (2): Sequential(
        (0): ConvTranspose2d(96, 48, kernel_size=(8, 1), stride=(4, 1), padding=(2, 0))
        (1): GroupNorm(1, 48, eps=1e-05, affine=True)
        (2): GELU(approximate='none')
      )
      (3): Sequential(
        (0): ConvTranspose2d(48, 4, kernel_size=(8, 1), stride=(4, 1), padding=(2, 0))
        (1): Identity()
        (2): Identity()
      )
    )
  )
  (time_decoder): TimeDecoder(
    (layers): ModuleList(
      (0): Sequential(
        (0): ConvTranspose1d(384, 192, kernel_size=(8,), stride=(4,), padding=(2,))
        (1): GroupNorm(1, 192, eps=1e-05, affine=True)
        (2): GELU(approximate='none')
      )
      (1): Sequential(
        (0): ConvTranspose1d(192, 96, kernel_size=(8,), stride=(4,), padding=(2,))
        (1): GroupNorm(1, 96, eps=1e-05, affine=True)
        (2): GELU(approximate='none')
      )
      (2): Sequential(
        (0): ConvTranspose1d(96, 48, kernel_size=(8,), stride=(4,), padding=(2,))
        (1): GroupNorm(1, 48, eps=1e-05, affine=True)
        (2): GELU(approximate='none')
      )
      (3): Sequential(
        (0): ConvTranspose1d(48, 4, kernel_size=(8,), stride=(4,), padding=(2,))
        (1): Identity()
        (2): Identity()
      )
    )
  )
  (freq_out): Conv2d(4, 2, kernel_size=(1, 1), stride=(1, 1))
  (time_out): Conv1d(4, 2, kernel_size=(1,), stride=(1,))
)