Model Summary: AudioTextHTDemucs( (htdemucs): HTDemucs( (encoder): ModuleList( (0): HEncLayer( (conv): Conv2d(4, 48, kernel_size=(8, 1), stride=(4, 1), padding=(2, 0)) (norm1): Identity() (rewrite): Conv2d(48, 96, kernel_size=(1, 1), stride=(1, 1)) (norm2): Identity() (dconv): DConv( (layers): ModuleList( (0): Sequential( (0): Conv1d(48, 6, kernel_size=(3,), stride=(1,), padding=(1,)) (1): GroupNorm(1, 6, eps=1e-05, affine=True) (2): GELU(approximate='none') (3): Conv1d(6, 96, kernel_size=(1,), stride=(1,)) (4): GroupNorm(1, 96, eps=1e-05, affine=True) (5): GLU(dim=1) (6): LayerScale() ) (1): Sequential( (0): Conv1d(48, 6, kernel_size=(3,), stride=(1,), padding=(2,), dilation=(2,)) (1): GroupNorm(1, 6, eps=1e-05, affine=True) (2): GELU(approximate='none') (3): Conv1d(6, 96, kernel_size=(1,), stride=(1,)) (4): GroupNorm(1, 96, eps=1e-05, affine=True) (5): GLU(dim=1) (6): LayerScale() ) ) ) ) (1): HEncLayer( (conv): Conv2d(48, 96, kernel_size=(8, 1), stride=(4, 1), padding=(2, 0)) (norm1): Identity() (rewrite): Conv2d(96, 192, kernel_size=(1, 1), stride=(1, 1)) (norm2): Identity() (dconv): DConv( (layers): ModuleList( (0): Sequential( (0): Conv1d(96, 12, kernel_size=(3,), stride=(1,), padding=(1,)) (1): GroupNorm(1, 12, eps=1e-05, affine=True) (2): GELU(approximate='none') (3): Conv1d(12, 192, kernel_size=(1,), stride=(1,)) (4): GroupNorm(1, 192, eps=1e-05, affine=True) (5): GLU(dim=1) (6): LayerScale() ) (1): Sequential( (0): Conv1d(96, 12, kernel_size=(3,), stride=(1,), padding=(2,), dilation=(2,)) (1): GroupNorm(1, 12, eps=1e-05, affine=True) (2): GELU(approximate='none') (3): Conv1d(12, 192, kernel_size=(1,), stride=(1,)) (4): GroupNorm(1, 192, eps=1e-05, affine=True) (5): GLU(dim=1) (6): LayerScale() ) ) ) ) (2): HEncLayer( (conv): Conv2d(96, 192, kernel_size=(8, 1), stride=(4, 1), padding=(2, 0)) (norm1): Identity() (rewrite): Conv2d(192, 384, kernel_size=(1, 1), stride=(1, 1)) (norm2): Identity() (dconv): DConv( (layers): ModuleList( (0): Sequential( (0): Conv1d(192, 24, kernel_size=(3,), stride=(1,), padding=(1,)) (1): GroupNorm(1, 24, eps=1e-05, affine=True) (2): GELU(approximate='none') (3): Conv1d(24, 384, kernel_size=(1,), stride=(1,)) (4): GroupNorm(1, 384, eps=1e-05, affine=True) (5): GLU(dim=1) (6): LayerScale() ) (1): Sequential( (0): Conv1d(192, 24, kernel_size=(3,), stride=(1,), padding=(2,), dilation=(2,)) (1): GroupNorm(1, 24, eps=1e-05, affine=True) (2): GELU(approximate='none') (3): Conv1d(24, 384, kernel_size=(1,), stride=(1,)) (4): GroupNorm(1, 384, eps=1e-05, affine=True) (5): GLU(dim=1) (6): LayerScale() ) ) ) ) (3): HEncLayer( (conv): Conv2d(192, 384, kernel_size=(8, 1), stride=(4, 1), padding=(2, 0)) (norm1): Identity() (rewrite): Conv2d(384, 768, kernel_size=(1, 1), stride=(1, 1)) (norm2): Identity() (dconv): DConv( (layers): ModuleList( (0): Sequential( (0): Conv1d(384, 48, kernel_size=(3,), stride=(1,), padding=(1,)) (1): GroupNorm(1, 48, eps=1e-05, affine=True) (2): GELU(approximate='none') (3): Conv1d(48, 768, kernel_size=(1,), stride=(1,)) (4): GroupNorm(1, 768, eps=1e-05, affine=True) (5): GLU(dim=1) (6): LayerScale() ) (1): Sequential( (0): Conv1d(384, 48, kernel_size=(3,), stride=(1,), padding=(2,), dilation=(2,)) (1): GroupNorm(1, 48, eps=1e-05, affine=True) (2): GELU(approximate='none') (3): Conv1d(48, 768, kernel_size=(1,), stride=(1,)) (4): GroupNorm(1, 768, eps=1e-05, affine=True) (5): GLU(dim=1) (6): LayerScale() ) ) ) ) ) (decoder): ModuleList( (0): HDecLayer( (conv_tr): ConvTranspose2d(384, 192, kernel_size=(8, 1), stride=(4, 1)) (norm2): Identity() (rewrite): Conv2d(384, 768, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (norm1): Identity() (dconv): DConv( (layers): ModuleList( (0): Sequential( (0): Conv1d(384, 48, kernel_size=(3,), stride=(1,), padding=(1,)) (1): GroupNorm(1, 48, eps=1e-05, affine=True) (2): GELU(approximate='none') (3): Conv1d(48, 768, kernel_size=(1,), stride=(1,)) (4): GroupNorm(1, 768, eps=1e-05, affine=True) (5): GLU(dim=1) (6): LayerScale() ) (1): Sequential( (0): Conv1d(384, 48, kernel_size=(3,), stride=(1,), padding=(2,), dilation=(2,)) (1): GroupNorm(1, 48, eps=1e-05, affine=True) (2): GELU(approximate='none') (3): Conv1d(48, 768, kernel_size=(1,), stride=(1,)) (4): GroupNorm(1, 768, eps=1e-05, affine=True) (5): GLU(dim=1) (6): LayerScale() ) ) ) ) (1): HDecLayer( (conv_tr): ConvTranspose2d(192, 96, kernel_size=(8, 1), stride=(4, 1)) (norm2): Identity() (rewrite): Conv2d(192, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (norm1): Identity() (dconv): DConv( (layers): ModuleList( (0): Sequential( (0): Conv1d(192, 24, kernel_size=(3,), stride=(1,), padding=(1,)) (1): GroupNorm(1, 24, eps=1e-05, affine=True) (2): GELU(approximate='none') (3): Conv1d(24, 384, kernel_size=(1,), stride=(1,)) (4): GroupNorm(1, 384, eps=1e-05, affine=True) (5): GLU(dim=1) (6): LayerScale() ) (1): Sequential( (0): Conv1d(192, 24, kernel_size=(3,), stride=(1,), padding=(2,), dilation=(2,)) (1): GroupNorm(1, 24, eps=1e-05, affine=True) (2): GELU(approximate='none') (3): Conv1d(24, 384, kernel_size=(1,), stride=(1,)) (4): GroupNorm(1, 384, eps=1e-05, affine=True) (5): GLU(dim=1) (6): LayerScale() ) ) ) ) (2): HDecLayer( (conv_tr): ConvTranspose2d(96, 48, kernel_size=(8, 1), stride=(4, 1)) (norm2): Identity() (rewrite): Conv2d(96, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (norm1): Identity() (dconv): DConv( (layers): ModuleList( (0): Sequential( (0): Conv1d(96, 12, kernel_size=(3,), stride=(1,), padding=(1,)) (1): GroupNorm(1, 12, eps=1e-05, affine=True) (2): GELU(approximate='none') (3): Conv1d(12, 192, kernel_size=(1,), stride=(1,)) (4): GroupNorm(1, 192, eps=1e-05, affine=True) (5): GLU(dim=1) (6): LayerScale() ) (1): Sequential( (0): Conv1d(96, 12, kernel_size=(3,), stride=(1,), padding=(2,), dilation=(2,)) (1): GroupNorm(1, 12, eps=1e-05, affine=True) (2): GELU(approximate='none') (3): Conv1d(12, 192, kernel_size=(1,), stride=(1,)) (4): GroupNorm(1, 192, eps=1e-05, affine=True) (5): GLU(dim=1) (6): LayerScale() ) ) ) ) (3): HDecLayer( (conv_tr): ConvTranspose2d(48, 16, kernel_size=(8, 1), stride=(4, 1)) (norm2): Identity() (rewrite): Conv2d(48, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (norm1): Identity() (dconv): DConv( (layers): ModuleList( (0): Sequential( (0): Conv1d(48, 6, kernel_size=(3,), stride=(1,), padding=(1,)) (1): GroupNorm(1, 6, eps=1e-05, affine=True) (2): GELU(approximate='none') (3): Conv1d(6, 96, kernel_size=(1,), stride=(1,)) (4): GroupNorm(1, 96, eps=1e-05, affine=True) (5): GLU(dim=1) (6): LayerScale() ) (1): Sequential( (0): Conv1d(48, 6, kernel_size=(3,), stride=(1,), padding=(2,), dilation=(2,)) (1): GroupNorm(1, 6, eps=1e-05, affine=True) (2): GELU(approximate='none') (3): Conv1d(6, 96, kernel_size=(1,), stride=(1,)) (4): GroupNorm(1, 96, eps=1e-05, affine=True) (5): GLU(dim=1) (6): LayerScale() ) ) ) ) ) (tencoder): ModuleList( (0): HEncLayer( (conv): Conv1d(2, 48, kernel_size=(8,), stride=(4,), padding=(2,)) (norm1): Identity() (rewrite): Conv1d(48, 96, kernel_size=(1,), stride=(1,)) (norm2): Identity() (dconv): DConv( (layers): ModuleList( (0): Sequential( (0): Conv1d(48, 6, kernel_size=(3,), stride=(1,), padding=(1,)) (1): GroupNorm(1, 6, eps=1e-05, affine=True) (2): GELU(approximate='none') (3): Conv1d(6, 96, kernel_size=(1,), stride=(1,)) (4): GroupNorm(1, 96, eps=1e-05, affine=True) (5): GLU(dim=1) (6): LayerScale() ) (1): Sequential( (0): Conv1d(48, 6, kernel_size=(3,), stride=(1,), padding=(2,), dilation=(2,)) (1): GroupNorm(1, 6, eps=1e-05, affine=True) (2): GELU(approximate='none') (3): Conv1d(6, 96, kernel_size=(1,), stride=(1,)) (4): GroupNorm(1, 96, eps=1e-05, affine=True) (5): GLU(dim=1) (6): LayerScale() ) ) ) ) (1): HEncLayer( (conv): Conv1d(48, 96, kernel_size=(8,), stride=(4,), padding=(2,)) (norm1): Identity() (rewrite): Conv1d(96, 192, kernel_size=(1,), stride=(1,)) (norm2): Identity() (dconv): DConv( (layers): ModuleList( (0): Sequential( (0): Conv1d(96, 12, kernel_size=(3,), stride=(1,), padding=(1,)) (1): GroupNorm(1, 12, eps=1e-05, affine=True) (2): GELU(approximate='none') (3): Conv1d(12, 192, kernel_size=(1,), stride=(1,)) (4): GroupNorm(1, 192, eps=1e-05, affine=True) (5): GLU(dim=1) (6): LayerScale() ) (1): Sequential( (0): Conv1d(96, 12, kernel_size=(3,), stride=(1,), padding=(2,), dilation=(2,)) (1): GroupNorm(1, 12, eps=1e-05, affine=True) (2): GELU(approximate='none') (3): Conv1d(12, 192, kernel_size=(1,), stride=(1,)) (4): GroupNorm(1, 192, eps=1e-05, affine=True) (5): GLU(dim=1) (6): LayerScale() ) ) ) ) (2): HEncLayer( (conv): Conv1d(96, 192, kernel_size=(8,), stride=(4,), padding=(2,)) (norm1): Identity() (rewrite): Conv1d(192, 384, kernel_size=(1,), stride=(1,)) (norm2): Identity() (dconv): DConv( (layers): ModuleList( (0): Sequential( (0): Conv1d(192, 24, kernel_size=(3,), stride=(1,), padding=(1,)) (1): GroupNorm(1, 24, eps=1e-05, affine=True) (2): GELU(approximate='none') (3): Conv1d(24, 384, kernel_size=(1,), stride=(1,)) (4): GroupNorm(1, 384, eps=1e-05, affine=True) (5): GLU(dim=1) (6): LayerScale() ) (1): Sequential( (0): Conv1d(192, 24, kernel_size=(3,), stride=(1,), padding=(2,), dilation=(2,)) (1): GroupNorm(1, 24, eps=1e-05, affine=True) (2): GELU(approximate='none') (3): Conv1d(24, 384, kernel_size=(1,), stride=(1,)) (4): GroupNorm(1, 384, eps=1e-05, affine=True) (5): GLU(dim=1) (6): LayerScale() ) ) ) ) (3): HEncLayer( (conv): Conv1d(192, 384, kernel_size=(8,), stride=(4,), padding=(2,)) (norm1): Identity() (rewrite): Conv1d(384, 768, kernel_size=(1,), stride=(1,)) (norm2): Identity() (dconv): DConv( (layers): ModuleList( (0): Sequential( (0): Conv1d(384, 48, kernel_size=(3,), stride=(1,), padding=(1,)) (1): GroupNorm(1, 48, eps=1e-05, affine=True) (2): GELU(approximate='none') (3): Conv1d(48, 768, kernel_size=(1,), stride=(1,)) (4): GroupNorm(1, 768, eps=1e-05, affine=True) (5): GLU(dim=1) (6): LayerScale() ) (1): Sequential( (0): Conv1d(384, 48, kernel_size=(3,), stride=(1,), padding=(2,), dilation=(2,)) (1): GroupNorm(1, 48, eps=1e-05, affine=True) (2): GELU(approximate='none') (3): Conv1d(48, 768, kernel_size=(1,), stride=(1,)) (4): GroupNorm(1, 768, eps=1e-05, affine=True) (5): GLU(dim=1) (6): LayerScale() ) ) ) ) ) (tdecoder): ModuleList( (0): HDecLayer( (conv_tr): ConvTranspose1d(384, 192, kernel_size=(8,), stride=(4,)) (norm2): Identity() (rewrite): Conv1d(384, 768, kernel_size=(3,), stride=(1,), padding=(1,)) (norm1): Identity() (dconv): DConv( (layers): ModuleList( (0): Sequential( (0): Conv1d(384, 48, kernel_size=(3,), stride=(1,), padding=(1,)) (1): GroupNorm(1, 48, eps=1e-05, affine=True) (2): GELU(approximate='none') (3): Conv1d(48, 768, kernel_size=(1,), stride=(1,)) (4): GroupNorm(1, 768, eps=1e-05, affine=True) (5): GLU(dim=1) (6): LayerScale() ) (1): Sequential( (0): Conv1d(384, 48, kernel_size=(3,), stride=(1,), padding=(2,), dilation=(2,)) (1): GroupNorm(1, 48, eps=1e-05, affine=True) (2): GELU(approximate='none') (3): Conv1d(48, 768, kernel_size=(1,), stride=(1,)) (4): GroupNorm(1, 768, eps=1e-05, affine=True) (5): GLU(dim=1) (6): LayerScale() ) ) ) ) (1): HDecLayer( (conv_tr): ConvTranspose1d(192, 96, kernel_size=(8,), stride=(4,)) (norm2): Identity() (rewrite): Conv1d(192, 384, kernel_size=(3,), stride=(1,), padding=(1,)) (norm1): Identity() (dconv): DConv( (layers): ModuleList( (0): Sequential( (0): Conv1d(192, 24, kernel_size=(3,), stride=(1,), padding=(1,)) (1): GroupNorm(1, 24, eps=1e-05, affine=True) (2): GELU(approximate='none') (3): Conv1d(24, 384, kernel_size=(1,), stride=(1,)) (4): GroupNorm(1, 384, eps=1e-05, affine=True) (5): GLU(dim=1) (6): LayerScale() ) (1): Sequential( (0): Conv1d(192, 24, kernel_size=(3,), stride=(1,), padding=(2,), dilation=(2,)) (1): GroupNorm(1, 24, eps=1e-05, affine=True) (2): GELU(approximate='none') (3): Conv1d(24, 384, kernel_size=(1,), stride=(1,)) (4): GroupNorm(1, 384, eps=1e-05, affine=True) (5): GLU(dim=1) (6): LayerScale() ) ) ) ) (2): HDecLayer( (conv_tr): ConvTranspose1d(96, 48, kernel_size=(8,), stride=(4,)) (norm2): Identity() (rewrite): Conv1d(96, 192, kernel_size=(3,), stride=(1,), padding=(1,)) (norm1): Identity() (dconv): DConv( (layers): ModuleList( (0): Sequential( (0): Conv1d(96, 12, kernel_size=(3,), stride=(1,), padding=(1,)) (1): GroupNorm(1, 12, eps=1e-05, affine=True) (2): GELU(approximate='none') (3): Conv1d(12, 192, kernel_size=(1,), stride=(1,)) (4): GroupNorm(1, 192, eps=1e-05, affine=True) (5): GLU(dim=1) (6): LayerScale() ) (1): Sequential( (0): Conv1d(96, 12, kernel_size=(3,), stride=(1,), padding=(2,), dilation=(2,)) (1): GroupNorm(1, 12, eps=1e-05, affine=True) (2): GELU(approximate='none') (3): Conv1d(12, 192, kernel_size=(1,), stride=(1,)) (4): GroupNorm(1, 192, eps=1e-05, affine=True) (5): GLU(dim=1) (6): LayerScale() ) ) ) ) (3): HDecLayer( (conv_tr): ConvTranspose1d(48, 8, kernel_size=(8,), stride=(4,)) (norm2): Identity() (rewrite): Conv1d(48, 96, kernel_size=(3,), stride=(1,), padding=(1,)) (norm1): Identity() (dconv): DConv( (layers): ModuleList( (0): Sequential( (0): Conv1d(48, 6, kernel_size=(3,), stride=(1,), padding=(1,)) (1): GroupNorm(1, 6, eps=1e-05, affine=True) (2): GELU(approximate='none') (3): Conv1d(6, 96, kernel_size=(1,), stride=(1,)) (4): GroupNorm(1, 96, eps=1e-05, affine=True) (5): GLU(dim=1) (6): LayerScale() ) (1): Sequential( (0): Conv1d(48, 6, kernel_size=(3,), stride=(1,), padding=(2,), dilation=(2,)) (1): GroupNorm(1, 6, eps=1e-05, affine=True) (2): GELU(approximate='none') (3): Conv1d(6, 96, kernel_size=(1,), stride=(1,)) (4): GroupNorm(1, 96, eps=1e-05, affine=True) (5): GLU(dim=1) (6): LayerScale() ) ) ) ) ) (freq_emb): ScaledEmbedding( (embedding): Embedding(512, 48) ) (channel_upsampler): Conv1d(384, 512, kernel_size=(1,), stride=(1,)) (channel_downsampler): Conv1d(512, 384, kernel_size=(1,), stride=(1,)) (channel_upsampler_t): Conv1d(384, 512, kernel_size=(1,), stride=(1,)) (channel_downsampler_t): Conv1d(512, 384, kernel_size=(1,), stride=(1,)) (crosstransformer): CrossTransformerEncoder( (norm_in): LayerNorm((512,), eps=1e-05, elementwise_affine=True) (norm_in_t): LayerNorm((512,), eps=1e-05, elementwise_affine=True) (layers): ModuleList( (0): MyTransformerEncoderLayer( (self_attn): MultiheadAttention( (out_proj): NonDynamicallyQuantizableLinear(in_features=512, out_features=512, bias=True) ) (linear1): Linear(in_features=512, out_features=2048, bias=True) (dropout): Dropout(p=0.02, inplace=False) (linear2): Linear(in_features=2048, out_features=512, bias=True) (norm1): LayerNorm((512,), eps=1e-05, elementwise_affine=True) (norm2): LayerNorm((512,), eps=1e-05, elementwise_affine=True) (dropout1): Dropout(p=0.02, inplace=False) (dropout2): Dropout(p=0.02, inplace=False) (norm_out): MyGroupNorm(1, 512, eps=1e-05, affine=True) (gamma_1): LayerScale() (gamma_2): LayerScale() ) (1): CrossTransformerEncoderLayer( (cross_attn): MultiheadAttention( (out_proj): NonDynamicallyQuantizableLinear(in_features=512, out_features=512, bias=True) ) (linear1): Linear(in_features=512, out_features=2048, bias=True) (dropout): Dropout(p=0.02, inplace=False) (linear2): Linear(in_features=2048, out_features=512, bias=True) (norm1): LayerNorm((512,), eps=1e-05, elementwise_affine=True) (norm2): LayerNorm((512,), eps=1e-05, elementwise_affine=True) (norm3): LayerNorm((512,), eps=1e-05, elementwise_affine=True) (norm_out): MyGroupNorm(1, 512, eps=1e-05, affine=True) (gamma_1): LayerScale() (gamma_2): LayerScale() (dropout1): Dropout(p=0.02, inplace=False) (dropout2): Dropout(p=0.02, inplace=False) ) (2): MyTransformerEncoderLayer( (self_attn): MultiheadAttention( (out_proj): NonDynamicallyQuantizableLinear(in_features=512, out_features=512, bias=True) ) (linear1): Linear(in_features=512, out_features=2048, bias=True) (dropout): Dropout(p=0.02, inplace=False) (linear2): Linear(in_features=2048, out_features=512, bias=True) (norm1): LayerNorm((512,), eps=1e-05, elementwise_affine=True) (norm2): LayerNorm((512,), eps=1e-05, elementwise_affine=True) (dropout1): Dropout(p=0.02, inplace=False) (dropout2): Dropout(p=0.02, inplace=False) (norm_out): MyGroupNorm(1, 512, eps=1e-05, affine=True) (gamma_1): LayerScale() (gamma_2): LayerScale() ) (3): CrossTransformerEncoderLayer( (cross_attn): MultiheadAttention( (out_proj): NonDynamicallyQuantizableLinear(in_features=512, out_features=512, bias=True) ) (linear1): Linear(in_features=512, out_features=2048, bias=True) (dropout): Dropout(p=0.02, inplace=False) (linear2): Linear(in_features=2048, out_features=512, bias=True) (norm1): LayerNorm((512,), eps=1e-05, elementwise_affine=True) (norm2): LayerNorm((512,), eps=1e-05, elementwise_affine=True) (norm3): LayerNorm((512,), eps=1e-05, elementwise_affine=True) (norm_out): MyGroupNorm(1, 512, eps=1e-05, affine=True) (gamma_1): LayerScale() (gamma_2): LayerScale() (dropout1): Dropout(p=0.02, inplace=False) (dropout2): Dropout(p=0.02, inplace=False) ) (4): MyTransformerEncoderLayer( (self_attn): MultiheadAttention( (out_proj): NonDynamicallyQuantizableLinear(in_features=512, out_features=512, bias=True) ) (linear1): Linear(in_features=512, out_features=2048, bias=True) (dropout): Dropout(p=0.02, inplace=False) (linear2): Linear(in_features=2048, out_features=512, bias=True) (norm1): LayerNorm((512,), eps=1e-05, elementwise_affine=True) (norm2): LayerNorm((512,), eps=1e-05, elementwise_affine=True) (dropout1): Dropout(p=0.02, inplace=False) (dropout2): Dropout(p=0.02, inplace=False) (norm_out): MyGroupNorm(1, 512, eps=1e-05, affine=True) (gamma_1): LayerScale() (gamma_2): LayerScale() ) ) (layers_t): ModuleList( (0): MyTransformerEncoderLayer( (self_attn): MultiheadAttention( (out_proj): NonDynamicallyQuantizableLinear(in_features=512, out_features=512, bias=True) ) (linear1): Linear(in_features=512, out_features=2048, bias=True) (dropout): Dropout(p=0.02, inplace=False) (linear2): Linear(in_features=2048, out_features=512, bias=True) (norm1): LayerNorm((512,), eps=1e-05, elementwise_affine=True) (norm2): LayerNorm((512,), eps=1e-05, elementwise_affine=True) (dropout1): Dropout(p=0.02, inplace=False) (dropout2): Dropout(p=0.02, inplace=False) (norm_out): MyGroupNorm(1, 512, eps=1e-05, affine=True) (gamma_1): LayerScale() (gamma_2): LayerScale() ) (1): CrossTransformerEncoderLayer( (cross_attn): MultiheadAttention( (out_proj): NonDynamicallyQuantizableLinear(in_features=512, out_features=512, bias=True) ) (linear1): Linear(in_features=512, out_features=2048, bias=True) (dropout): Dropout(p=0.02, inplace=False) (linear2): Linear(in_features=2048, out_features=512, bias=True) (norm1): LayerNorm((512,), eps=1e-05, elementwise_affine=True) (norm2): LayerNorm((512,), eps=1e-05, elementwise_affine=True) (norm3): LayerNorm((512,), eps=1e-05, elementwise_affine=True) (norm_out): MyGroupNorm(1, 512, eps=1e-05, affine=True) (gamma_1): LayerScale() (gamma_2): LayerScale() (dropout1): Dropout(p=0.02, inplace=False) (dropout2): Dropout(p=0.02, inplace=False) ) (2): MyTransformerEncoderLayer( (self_attn): MultiheadAttention( (out_proj): NonDynamicallyQuantizableLinear(in_features=512, out_features=512, bias=True) ) (linear1): Linear(in_features=512, out_features=2048, bias=True) (dropout): Dropout(p=0.02, inplace=False) (linear2): Linear(in_features=2048, out_features=512, bias=True) (norm1): LayerNorm((512,), eps=1e-05, elementwise_affine=True) (norm2): LayerNorm((512,), eps=1e-05, elementwise_affine=True) (dropout1): Dropout(p=0.02, inplace=False) (dropout2): Dropout(p=0.02, inplace=False) (norm_out): MyGroupNorm(1, 512, eps=1e-05, affine=True) (gamma_1): LayerScale() (gamma_2): LayerScale() ) (3): CrossTransformerEncoderLayer( (cross_attn): MultiheadAttention( (out_proj): NonDynamicallyQuantizableLinear(in_features=512, out_features=512, bias=True) ) (linear1): Linear(in_features=512, out_features=2048, bias=True) (dropout): Dropout(p=0.02, inplace=False) (linear2): Linear(in_features=2048, out_features=512, bias=True) (norm1): LayerNorm((512,), eps=1e-05, elementwise_affine=True) (norm2): LayerNorm((512,), eps=1e-05, elementwise_affine=True) (norm3): LayerNorm((512,), eps=1e-05, elementwise_affine=True) (norm_out): MyGroupNorm(1, 512, eps=1e-05, affine=True) (gamma_1): LayerScale() (gamma_2): LayerScale() (dropout1): Dropout(p=0.02, inplace=False) (dropout2): Dropout(p=0.02, inplace=False) ) (4): MyTransformerEncoderLayer( (self_attn): MultiheadAttention( (out_proj): NonDynamicallyQuantizableLinear(in_features=512, out_features=512, bias=True) ) (linear1): Linear(in_features=512, out_features=2048, bias=True) (dropout): Dropout(p=0.02, inplace=False) (linear2): Linear(in_features=2048, out_features=512, bias=True) (norm1): LayerNorm((512,), eps=1e-05, elementwise_affine=True) (norm2): LayerNorm((512,), eps=1e-05, elementwise_affine=True) (dropout1): Dropout(p=0.02, inplace=False) (dropout2): Dropout(p=0.02, inplace=False) (norm_out): MyGroupNorm(1, 512, eps=1e-05, affine=True) (gamma_1): LayerScale() (gamma_2): LayerScale() ) ) ) ) (clap): ClapModel( (text_model): ClapTextModel( (embeddings): ClapTextEmbeddings( (word_embeddings): Embedding(50265, 768, padding_idx=1) (position_embeddings): Embedding(514, 768, padding_idx=1) (token_type_embeddings): Embedding(1, 768) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) (encoder): ClapTextEncoder( (layer): ModuleList( (0-11): 12 x ClapTextLayer( (attention): ClapTextAttention( (self): ClapTextSelfAttention( (query): Linear(in_features=768, out_features=768, bias=True) (key): Linear(in_features=768, out_features=768, bias=True) (value): Linear(in_features=768, out_features=768, bias=True) (dropout): Dropout(p=0.1, inplace=False) ) (output): ClapTextSelfOutput( (dense): Linear(in_features=768, out_features=768, bias=True) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) (intermediate): ClapTextIntermediate( (dense): Linear(in_features=768, out_features=3072, bias=True) (intermediate_act_fn): GELUActivation() ) (output): ClapTextOutput( (dense): Linear(in_features=3072, out_features=768, bias=True) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) ) ) (pooler): ClapTextPooler( (dense): Linear(in_features=768, out_features=768, bias=True) (activation): Tanh() ) ) (text_projection): ClapProjectionLayer( (linear1): Linear(in_features=768, out_features=512, bias=True) (activation): ReLU() (linear2): Linear(in_features=512, out_features=512, bias=True) ) (audio_model): ClapAudioModel( (audio_encoder): ClapAudioEncoder( (patch_embed): ClapAudioPatchEmbed( (proj): Conv2d(1, 96, kernel_size=(4, 4), stride=(4, 4)) (norm): LayerNorm((96,), eps=1e-05, elementwise_affine=True) ) (layers): ModuleList( (0): ClapAudioStage( (blocks): ModuleList( (0-1): 2 x ClapAudioLayer( (layernorm_before): LayerNorm((96,), eps=1e-05, elementwise_affine=True) (attention): ClapAudioAttention( (self): ClapAudioSelfAttention( (query): Linear(in_features=96, out_features=96, bias=True) (key): Linear(in_features=96, out_features=96, bias=True) (value): Linear(in_features=96, out_features=96, bias=True) (dropout): Dropout(p=0.0, inplace=False) ) (output): ClapAudioSelfOutput( (dense): Linear(in_features=96, out_features=96, bias=True) (dropout): Dropout(p=0.0, inplace=False) ) ) (drop_path): Identity() (layernorm_after): LayerNorm((96,), eps=1e-05, elementwise_affine=True) (intermediate): ClapAudioIntermediate( (dense): Linear(in_features=96, out_features=384, bias=True) (intermediate_act_fn): GELUActivation() ) (output): ClapAudioOutput( (dense): Linear(in_features=384, out_features=96, bias=True) (dropout): Dropout(p=0.1, inplace=False) ) ) ) (downsample): ClapAudioPatchMerging( (reduction): Linear(in_features=384, out_features=192, bias=False) (norm): LayerNorm((384,), eps=1e-05, elementwise_affine=True) ) ) (1): ClapAudioStage( (blocks): ModuleList( (0-1): 2 x ClapAudioLayer( (layernorm_before): LayerNorm((192,), eps=1e-05, elementwise_affine=True) (attention): ClapAudioAttention( (self): ClapAudioSelfAttention( (query): Linear(in_features=192, out_features=192, bias=True) (key): Linear(in_features=192, out_features=192, bias=True) (value): Linear(in_features=192, out_features=192, bias=True) (dropout): Dropout(p=0.0, inplace=False) ) (output): ClapAudioSelfOutput( (dense): Linear(in_features=192, out_features=192, bias=True) (dropout): Dropout(p=0.0, inplace=False) ) ) (drop_path): Identity() (layernorm_after): LayerNorm((192,), eps=1e-05, elementwise_affine=True) (intermediate): ClapAudioIntermediate( (dense): Linear(in_features=192, out_features=768, bias=True) (intermediate_act_fn): GELUActivation() ) (output): ClapAudioOutput( (dense): Linear(in_features=768, out_features=192, bias=True) (dropout): Dropout(p=0.1, inplace=False) ) ) ) (downsample): ClapAudioPatchMerging( (reduction): Linear(in_features=768, out_features=384, bias=False) (norm): LayerNorm((768,), eps=1e-05, elementwise_affine=True) ) ) (2): ClapAudioStage( (blocks): ModuleList( (0-5): 6 x ClapAudioLayer( (layernorm_before): LayerNorm((384,), eps=1e-05, elementwise_affine=True) (attention): ClapAudioAttention( (self): ClapAudioSelfAttention( (query): Linear(in_features=384, out_features=384, bias=True) (key): Linear(in_features=384, out_features=384, bias=True) (value): Linear(in_features=384, out_features=384, bias=True) (dropout): Dropout(p=0.0, inplace=False) ) (output): ClapAudioSelfOutput( (dense): Linear(in_features=384, out_features=384, bias=True) (dropout): Dropout(p=0.0, inplace=False) ) ) (drop_path): Identity() (layernorm_after): LayerNorm((384,), eps=1e-05, elementwise_affine=True) (intermediate): ClapAudioIntermediate( (dense): Linear(in_features=384, out_features=1536, bias=True) (intermediate_act_fn): GELUActivation() ) (output): ClapAudioOutput( (dense): Linear(in_features=1536, out_features=384, bias=True) (dropout): Dropout(p=0.1, inplace=False) ) ) ) (downsample): ClapAudioPatchMerging( (reduction): Linear(in_features=1536, out_features=768, bias=False) (norm): LayerNorm((1536,), eps=1e-05, elementwise_affine=True) ) ) (3): ClapAudioStage( (blocks): ModuleList( (0-1): 2 x ClapAudioLayer( (layernorm_before): LayerNorm((768,), eps=1e-05, elementwise_affine=True) (attention): ClapAudioAttention( (self): ClapAudioSelfAttention( (query): Linear(in_features=768, out_features=768, bias=True) (key): Linear(in_features=768, out_features=768, bias=True) (value): Linear(in_features=768, out_features=768, bias=True) (dropout): Dropout(p=0.0, inplace=False) ) (output): ClapAudioSelfOutput( (dense): Linear(in_features=768, out_features=768, bias=True) (dropout): Dropout(p=0.0, inplace=False) ) ) (drop_path): Identity() (layernorm_after): LayerNorm((768,), eps=1e-05, elementwise_affine=True) (intermediate): ClapAudioIntermediate( (dense): Linear(in_features=768, out_features=3072, bias=True) (intermediate_act_fn): GELUActivation() ) (output): ClapAudioOutput( (dense): Linear(in_features=3072, out_features=768, bias=True) (dropout): Dropout(p=0.1, inplace=False) ) ) ) ) ) (batch_norm): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (norm): LayerNorm((768,), eps=1e-05, elementwise_affine=True) (avgpool): AdaptiveAvgPool1d(output_size=1) ) ) (audio_projection): ClapProjectionLayer( (linear1): Linear(in_features=768, out_features=512, bias=True) (activation): ReLU() (linear2): Linear(in_features=512, out_features=512, bias=True) ) ) (text_attn): TextCrossAttention( (q_proj): Linear(in_features=384, out_features=384, bias=True) (k_proj): Linear(in_features=512, out_features=384, bias=True) (v_proj): Linear(in_features=512, out_features=384, bias=True) (attn): MultiheadAttention( (out_proj): NonDynamicallyQuantizableLinear(in_features=384, out_features=384, bias=True) ) (out_mlp): Sequential( (0): Linear(in_features=384, out_features=384, bias=True) (1): GELU(approximate='none') (2): Linear(in_features=384, out_features=384, bias=True) ) (norm_q): LayerNorm((384,), eps=1e-05, elementwise_affine=True) (norm_out): LayerNorm((384,), eps=1e-05, elementwise_affine=True) ) (freq_decoder): FreqDecoder( (layers): ModuleList( (0): Sequential( (0): ConvTranspose2d(384, 192, kernel_size=(8, 1), stride=(4, 1), padding=(2, 0)) (1): GroupNorm(1, 192, eps=1e-05, affine=True) (2): GELU(approximate='none') ) (1): Sequential( (0): ConvTranspose2d(192, 96, kernel_size=(8, 1), stride=(4, 1), padding=(2, 0)) (1): GroupNorm(1, 96, eps=1e-05, affine=True) (2): GELU(approximate='none') ) (2): Sequential( (0): ConvTranspose2d(96, 48, kernel_size=(8, 1), stride=(4, 1), padding=(2, 0)) (1): GroupNorm(1, 48, eps=1e-05, affine=True) (2): GELU(approximate='none') ) (3): Sequential( (0): ConvTranspose2d(48, 4, kernel_size=(8, 1), stride=(4, 1), padding=(2, 0)) (1): Identity() (2): Identity() ) ) ) (time_decoder): TimeDecoder( (layers): ModuleList( (0): Sequential( (0): ConvTranspose1d(384, 192, kernel_size=(8,), stride=(4,), padding=(2,)) (1): GroupNorm(1, 192, eps=1e-05, affine=True) (2): GELU(approximate='none') ) (1): Sequential( (0): ConvTranspose1d(192, 96, kernel_size=(8,), stride=(4,), padding=(2,)) (1): GroupNorm(1, 96, eps=1e-05, affine=True) (2): GELU(approximate='none') ) (2): Sequential( (0): ConvTranspose1d(96, 48, kernel_size=(8,), stride=(4,), padding=(2,)) (1): GroupNorm(1, 48, eps=1e-05, affine=True) (2): GELU(approximate='none') ) (3): Sequential( (0): ConvTranspose1d(48, 4, kernel_size=(8,), stride=(4,), padding=(2,)) (1): Identity() (2): Identity() ) ) ) (freq_out): Conv2d(4, 2, kernel_size=(1, 1), stride=(1, 1)) (time_out): Conv1d(4, 2, kernel_size=(1,), stride=(1,)) )