Spaces:
Paused
Paused
Synced repo using 'sync_with_huggingface' Github Action
Browse files- random_sample/arena_interface.py +60 -33
- random_sample/gen_api_answer.py +77 -6
- random_sample/prompts.py +1 -1
random_sample/arena_interface.py
CHANGED
|
@@ -6,14 +6,17 @@ from dotenv import load_dotenv
|
|
| 6 |
load_dotenv()
|
| 7 |
|
| 8 |
from .gen_api_answer import (
|
| 9 |
-
get_atla_response
|
|
|
|
|
|
|
| 10 |
)
|
| 11 |
|
| 12 |
from .prompts import (
|
| 13 |
DEFAULT_EVAL_CRITERIA,
|
| 14 |
DEFAULT_EVAL_PROMPT,
|
| 15 |
DEFAULT_EVAL_PROMPT_EDITABLE,
|
| 16 |
-
|
|
|
|
| 17 |
)
|
| 18 |
|
| 19 |
from .random_sample_generation import (
|
|
@@ -67,6 +70,15 @@ def create_arena_interface():
|
|
| 67 |
value=DEFAULT_EVAL_PROMPT,
|
| 68 |
visible=False
|
| 69 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
with gr.Row():
|
| 71 |
# Left side - Input section
|
| 72 |
with gr.Column(scale=1):
|
|
@@ -234,36 +246,62 @@ def create_arena_interface():
|
|
| 234 |
# Add a new state variable to track first game
|
| 235 |
first_game_state = gr.State(True) # Initialize as True
|
| 236 |
|
| 237 |
-
# Update the submit function to
|
| 238 |
def submit_and_store(
|
|
|
|
| 239 |
use_reference,
|
| 240 |
eval_criteria_text,
|
| 241 |
human_input,
|
| 242 |
ai_response,
|
| 243 |
-
|
| 244 |
):
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
prompt
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 260 |
|
| 261 |
# Response now contains score and critique directly
|
| 262 |
if isinstance(response, dict) and 'score' in response and 'critique' in response:
|
| 263 |
score = str(response['score'])
|
| 264 |
critique = response['critique']
|
| 265 |
else:
|
| 266 |
-
# Handle error case
|
| 267 |
score = "Error"
|
| 268 |
critique = str(response)
|
| 269 |
|
|
@@ -274,22 +312,11 @@ def create_arena_interface():
|
|
| 274 |
gr.update(value="🎲"),
|
| 275 |
]
|
| 276 |
|
| 277 |
-
# Update the click handler
|
| 278 |
-
def create_submit_handler():
|
| 279 |
-
first_game = True
|
| 280 |
-
|
| 281 |
-
def handler(*args):
|
| 282 |
-
nonlocal first_game
|
| 283 |
-
result = submit_and_store(*args)
|
| 284 |
-
first_game = False # Set to False after first submission
|
| 285 |
-
return result
|
| 286 |
-
|
| 287 |
-
return handler
|
| 288 |
-
|
| 289 |
-
# Update the send_btn click handler
|
| 290 |
send_btn.click(
|
| 291 |
fn=submit_and_store,
|
| 292 |
inputs=[
|
|
|
|
| 293 |
use_reference_toggle,
|
| 294 |
eval_criteria_text,
|
| 295 |
human_input,
|
|
|
|
| 6 |
load_dotenv()
|
| 7 |
|
| 8 |
from .gen_api_answer import (
|
| 9 |
+
get_atla_response,
|
| 10 |
+
get_selene_mini_response,
|
| 11 |
+
parse_selene_mini_response
|
| 12 |
)
|
| 13 |
|
| 14 |
from .prompts import (
|
| 15 |
DEFAULT_EVAL_CRITERIA,
|
| 16 |
DEFAULT_EVAL_PROMPT,
|
| 17 |
DEFAULT_EVAL_PROMPT_EDITABLE,
|
| 18 |
+
ATLA_PROMPT,
|
| 19 |
+
ATLA_PROMPT_WITH_REFERENCE
|
| 20 |
)
|
| 21 |
|
| 22 |
from .random_sample_generation import (
|
|
|
|
| 70 |
value=DEFAULT_EVAL_PROMPT,
|
| 71 |
visible=False
|
| 72 |
)
|
| 73 |
+
with gr.Row():
|
| 74 |
+
# Add model selector dropdown at the top
|
| 75 |
+
model_selector = gr.Dropdown(
|
| 76 |
+
choices=["Selene", "Selene Mini"],
|
| 77 |
+
value="Selene",
|
| 78 |
+
label="Choose your Atla Model",
|
| 79 |
+
interactive=True
|
| 80 |
+
)
|
| 81 |
+
|
| 82 |
with gr.Row():
|
| 83 |
# Left side - Input section
|
| 84 |
with gr.Column(scale=1):
|
|
|
|
| 246 |
# Add a new state variable to track first game
|
| 247 |
first_game_state = gr.State(True) # Initialize as True
|
| 248 |
|
| 249 |
+
# Update the submit function to handle both models
|
| 250 |
def submit_and_store(
|
| 251 |
+
model_choice,
|
| 252 |
use_reference,
|
| 253 |
eval_criteria_text,
|
| 254 |
human_input,
|
| 255 |
ai_response,
|
| 256 |
+
ground_truth,
|
| 257 |
):
|
| 258 |
+
if model_choice == "Selene Mini":
|
| 259 |
+
# Prepare prompt based on reference mode
|
| 260 |
+
prompt_template = ATLA_PROMPT_WITH_REFERENCE if use_reference else ATLA_PROMPT
|
| 261 |
+
prompt = prompt_template.format(
|
| 262 |
+
human_input=human_input,
|
| 263 |
+
ai_response=ai_response,
|
| 264 |
+
eval_criteria=eval_criteria_text,
|
| 265 |
+
ground_truth=ground_truth if use_reference else ""
|
| 266 |
+
)
|
| 267 |
+
|
| 268 |
+
print("\n=== Debug: Prompt being sent to Selene Mini ===")
|
| 269 |
+
print(prompt)
|
| 270 |
+
print("============================================\n")
|
| 271 |
+
|
| 272 |
+
# Get and parse response
|
| 273 |
+
raw_response = get_selene_mini_response(
|
| 274 |
+
model_name="AtlaAI/Selene-1-Mini-Llama-3.1-8B",
|
| 275 |
+
prompt=prompt,
|
| 276 |
+
max_tokens=500,
|
| 277 |
+
temperature=0.01
|
| 278 |
+
)
|
| 279 |
+
response = parse_selene_mini_response(raw_response)
|
| 280 |
+
else:
|
| 281 |
+
# Selene API logic
|
| 282 |
+
prompt_data = {
|
| 283 |
+
'human_input': human_input,
|
| 284 |
+
'ai_response': ai_response,
|
| 285 |
+
'ground_truth': ground_truth if use_reference else None,
|
| 286 |
+
'eval_criteria': eval_criteria_text,
|
| 287 |
+
}
|
| 288 |
+
|
| 289 |
+
print("\n=== Debug: Prompt data being sent to Selene API ===")
|
| 290 |
+
print(json.dumps(prompt_data, indent=2))
|
| 291 |
+
print("============================================\n")
|
| 292 |
+
|
| 293 |
+
response = get_atla_response(
|
| 294 |
+
model_name="AtlaAI/Selene-1-Mini-Llama-3.1-8B",
|
| 295 |
+
prompt=prompt_data,
|
| 296 |
+
max_tokens=500,
|
| 297 |
+
temperature=0.01
|
| 298 |
+
)
|
| 299 |
|
| 300 |
# Response now contains score and critique directly
|
| 301 |
if isinstance(response, dict) and 'score' in response and 'critique' in response:
|
| 302 |
score = str(response['score'])
|
| 303 |
critique = response['critique']
|
| 304 |
else:
|
|
|
|
| 305 |
score = "Error"
|
| 306 |
critique = str(response)
|
| 307 |
|
|
|
|
| 312 |
gr.update(value="🎲"),
|
| 313 |
]
|
| 314 |
|
| 315 |
+
# Update the send_btn click handler with new input
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 316 |
send_btn.click(
|
| 317 |
fn=submit_and_store,
|
| 318 |
inputs=[
|
| 319 |
+
model_selector,
|
| 320 |
use_reference_toggle,
|
| 321 |
eval_criteria_text,
|
| 322 |
human_input,
|
random_sample/gen_api_answer.py
CHANGED
|
@@ -1,14 +1,16 @@
|
|
| 1 |
from openai import OpenAI
|
| 2 |
import anthropic
|
| 3 |
from together import Together
|
| 4 |
-
import os
|
| 5 |
from atla import Atla
|
| 6 |
from dotenv import load_dotenv
|
| 7 |
from .prompts import (
|
| 8 |
-
JUDGE_SYSTEM_PROMPT
|
| 9 |
-
ATLA_PROMPT,
|
| 10 |
-
ATLA_PROMPT_WITH_REFERENCE
|
| 11 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
load_dotenv()
|
| 14 |
|
|
@@ -57,7 +59,7 @@ def get_atla_response(model_name, prompt, system_prompt=None, max_tokens=500, te
|
|
| 57 |
# Extract components from the prompt data
|
| 58 |
model_input = prompt.get('human_input', '')
|
| 59 |
model_output = prompt.get('ai_response', '')
|
| 60 |
-
expected_output = prompt.get('
|
| 61 |
evaluation_criteria = prompt.get('eval_criteria', '')
|
| 62 |
|
| 63 |
response = atla_client.evaluation.create(
|
|
@@ -74,4 +76,73 @@ def get_atla_response(model_name, prompt, system_prompt=None, max_tokens=500, te
|
|
| 74 |
"critique": response.result.evaluation.critique
|
| 75 |
}
|
| 76 |
except Exception as e:
|
| 77 |
-
return f"Error with Atla model {model_name}: {str(e)}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
from openai import OpenAI
|
| 2 |
import anthropic
|
| 3 |
from together import Together
|
| 4 |
+
import os
|
| 5 |
from atla import Atla
|
| 6 |
from dotenv import load_dotenv
|
| 7 |
from .prompts import (
|
| 8 |
+
JUDGE_SYSTEM_PROMPT
|
|
|
|
|
|
|
| 9 |
)
|
| 10 |
+
from transformers import AutoTokenizer
|
| 11 |
+
import requests
|
| 12 |
+
import json
|
| 13 |
+
import re
|
| 14 |
|
| 15 |
load_dotenv()
|
| 16 |
|
|
|
|
| 59 |
# Extract components from the prompt data
|
| 60 |
model_input = prompt.get('human_input', '')
|
| 61 |
model_output = prompt.get('ai_response', '')
|
| 62 |
+
expected_output = prompt.get('ground_truth')
|
| 63 |
evaluation_criteria = prompt.get('eval_criteria', '')
|
| 64 |
|
| 65 |
response = atla_client.evaluation.create(
|
|
|
|
| 76 |
"critique": response.result.evaluation.critique
|
| 77 |
}
|
| 78 |
except Exception as e:
|
| 79 |
+
return f"Error with Atla model {model_name}: {str(e)}"
|
| 80 |
+
|
| 81 |
+
def get_selene_mini_response(model_name, prompt, system_prompt=None, max_tokens=500, temperature=0.01):
|
| 82 |
+
"""Get response from HF endpoint for Atla model"""
|
| 83 |
+
try:
|
| 84 |
+
headers = {
|
| 85 |
+
"Accept": "application/json",
|
| 86 |
+
"Authorization": f"Bearer {hf_api_key}",
|
| 87 |
+
"Content-Type": "application/json"
|
| 88 |
+
}
|
| 89 |
+
|
| 90 |
+
# Create messages list for chat template
|
| 91 |
+
messages = []
|
| 92 |
+
if system_prompt:
|
| 93 |
+
messages.append({"role": "system", "content": system_prompt})
|
| 94 |
+
messages.append({"role": "user", "content": prompt})
|
| 95 |
+
|
| 96 |
+
# Apply chat template
|
| 97 |
+
model_id = "AtlaAI/Selene-1-Mini-Llama-3.1-8B"
|
| 98 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id, token=hf_api_key)
|
| 99 |
+
formatted_prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 100 |
+
|
| 101 |
+
payload = {
|
| 102 |
+
"inputs": formatted_prompt,
|
| 103 |
+
"parameters": {
|
| 104 |
+
"max_new_tokens": max_tokens,
|
| 105 |
+
"return_full_text": False,
|
| 106 |
+
"temperature": temperature,
|
| 107 |
+
"seed": 42,
|
| 108 |
+
"add_generation_prompt": True
|
| 109 |
+
}
|
| 110 |
+
}
|
| 111 |
+
|
| 112 |
+
response = requests.post(
|
| 113 |
+
"https://bkp9p28gri93egqh.us-east-1.aws.endpoints.huggingface.cloud",
|
| 114 |
+
headers=headers,
|
| 115 |
+
json=payload
|
| 116 |
+
)
|
| 117 |
+
return response.json()[0]["generated_text"]
|
| 118 |
+
except Exception as e:
|
| 119 |
+
return f"Error with Atla model {model_name}: {str(e)}"
|
| 120 |
+
|
| 121 |
+
def parse_selene_mini_response(response_text):
|
| 122 |
+
"""Parse the response from Selene Mini to extract score and critique"""
|
| 123 |
+
try:
|
| 124 |
+
# Clean up the response text
|
| 125 |
+
response_text = response_text.strip()
|
| 126 |
+
|
| 127 |
+
# More flexible regex patterns
|
| 128 |
+
reasoning_pattern = r'\*\*Reasoning:?\*\*\s*(.*?)(?=\*\*Result|$)'
|
| 129 |
+
result_pattern = r'\*\*Result:?\*\*\s*(\d+)'
|
| 130 |
+
|
| 131 |
+
reasoning_match = re.search(reasoning_pattern, response_text, re.DOTALL | re.IGNORECASE)
|
| 132 |
+
result_match = re.search(result_pattern, response_text, re.IGNORECASE)
|
| 133 |
+
|
| 134 |
+
if reasoning_match and result_match:
|
| 135 |
+
critique = reasoning_match.group(1).strip()
|
| 136 |
+
score = result_match.group(1)
|
| 137 |
+
return {"score": score, "critique": critique}
|
| 138 |
+
else:
|
| 139 |
+
# If we can't parse it properly, let's return the raw response as critique
|
| 140 |
+
return {
|
| 141 |
+
"score": "Error",
|
| 142 |
+
"critique": f"Failed to parse response. Raw response:\n{response_text}"
|
| 143 |
+
}
|
| 144 |
+
except Exception as e:
|
| 145 |
+
return {
|
| 146 |
+
"score": "Error",
|
| 147 |
+
"critique": f"Error parsing response: {str(e)}\nRaw response:\n{response_text}"
|
| 148 |
+
}
|
random_sample/prompts.py
CHANGED
|
@@ -88,7 +88,7 @@ ATLA_PROMPT_WITH_REFERENCE = """You are tasked with evaluating a response based
|
|
| 88 |
{eval_criteria}
|
| 89 |
|
| 90 |
Reference answer:
|
| 91 |
-
{
|
| 92 |
|
| 93 |
# Judge system prompt for non-Prometheus models
|
| 94 |
JUDGE_SYSTEM_PROMPT = """Please act as an impartial judge and evaluate based on the user's instruction. Your output format should strictly adhere to JSON as follows: {"feedback": "<write feedback>", "result": <numerical score>}. Ensure the output is valid JSON, without additional formatting or explanations."""
|
|
|
|
| 88 |
{eval_criteria}
|
| 89 |
|
| 90 |
Reference answer:
|
| 91 |
+
{ground_truth}"""
|
| 92 |
|
| 93 |
# Judge system prompt for non-Prometheus models
|
| 94 |
JUDGE_SYSTEM_PROMPT = """Please act as an impartial judge and evaluate based on the user's instruction. Your output format should strictly adhere to JSON as follows: {"feedback": "<write feedback>", "result": <numerical score>}. Ensure the output is valid JSON, without additional formatting or explanations."""
|