| from transformers import AutoTokenizer, AutoModelForCausalLM | |
| import gradio as gr | |
| import torch | |
| model_id = "ilsp/Meltemi-7B-Instruct-v1" | |
| tokenizer = AutoTokenizer.from_pretrained(model_id) | |
| model = AutoModelForCausalLM.from_pretrained( | |
| model_id, | |
| device_map="auto", | |
| load_in_4bit=True, | |
| torch_dtype=torch.float16 | |
| ) | |
| def chat(user_input): | |
| messages = [ | |
| {"role": "system", "content": "Είσαι το Μελτέμι, ένα γλωσσικό μοντέλο για την ελληνική γλώσσα."}, | |
| {"role": "user", "content": user_input} | |
| ] | |
| prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
| inputs = tokenizer(prompt, return_tensors="pt").to(model.device) | |
| outputs = model.generate(**inputs, max_new_tokens=256) | |
| response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
| return response | |
| gr.Interface(fn=chat, inputs="text", outputs="text", title="Meltemi Chatbot 🇬🇷").launch() | |