from transformers import AutoTokenizer, AutoModelForCausalLM import gradio as gr import torch model_id = "ilsp/Meltemi-7B-Instruct-v1" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained( model_id, device_map="auto", load_in_4bit=True, torch_dtype=torch.float16 ) def chat(user_input): messages = [ {"role": "system", "content": "Είσαι το Μελτέμι, ένα γλωσσικό μοντέλο για την ελληνική γλώσσα."}, {"role": "user", "content": user_input} ] prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) inputs = tokenizer(prompt, return_tensors="pt").to(model.device) outputs = model.generate(**inputs, max_new_tokens=256) response = tokenizer.decode(outputs[0], skip_special_tokens=True) return response gr.Interface(fn=chat, inputs="text", outputs="text", title="Meltemi Chatbot 🇬🇷").launch()