Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| import requests | |
| import json | |
| from huggingface_hub import InferenceClient | |
| API_TOKEN = "your_huggingface_api_token" # Replace with your actual token | |
| API_URL = "https://api-inference.huggingface.co/models/InterSync/Mistral-7B-Instruct-v0.2-Function-Calling" | |
| headers = {"Authorization": f"Bearer {API_TOKEN}"} | |
| def get_weather(location: str, unit: str = "celsius"): | |
| # Replace with your actual weather API call | |
| pass | |
| def get_weather_schema(): | |
| return { | |
| "name": "get_weather", | |
| "description": "Get the current weather in a given location", | |
| "parameters": { | |
| "type": "object", | |
| "properties": { | |
| "location": {"type": "string", "description": "The city and state, or zip code"}, | |
| "unit": {"type": "string", "enum": ["celsius", "fahrenheit"], "description": "Unit of temperature"} | |
| }, | |
| "required": ["location"] | |
| } | |
| } | |
| def query_model(payload): | |
| response = requests.post(API_URL, headers=headers, json=payload) | |
| return response.json() | |
| with gr.Blocks() as demo: | |
| gr.Markdown("# Mistral-7B-Instruct Function Calling Demo") | |
| with gr.Row(): | |
| with gr.Column(scale=4): | |
| input_text = gr.Textbox(label="Enter your text", lines=5) | |
| submit_btn = gr.Button("Submit") | |
| with gr.Column(scale=6): | |
| output_text = gr.Textbox(label="Model Output", lines=10) | |
| def user(user_message, history): | |
| return "", history + [[user_message, None]] # Add user message to chat history | |
| def bot(history): | |
| if history: | |
| user_message = history[-1][0] | |
| payload = { | |
| "inputs": user_message, | |
| "parameters": {"function_call": "auto"} | |
| } | |
| output = query_model(payload) | |
| else: | |
| return history # Or some default response if history is empty | |
| # Parse the model's response | |
| if 'function_call' in output and 'name' in output['function_call']: | |
| function_name = output['function_call']['name'] | |
| arguments = output['function_call'].get('arguments', {}) | |
| if function_name == "get_weather" and arguments: | |
| weather_info = get_weather(**arguments) | |
| response_message = f"The weather in {arguments['location']} is {weather_info['description']} with a temperature of {weather_info['temperature']} {weather_info['unit']}." | |
| else: | |
| response_message = "Function not found or invalid arguments." | |
| else: | |
| response_message = output[0]['generated_text'] | |
| history[-1][1] = response_message | |
| return history | |
| input_text.change(user, [input_text, output_text], [input_text, output_text], queue=False).then( | |
| bot, [output_text], [output_text] | |
| ) | |
| submit_btn.click(user, [input_text, output_text], [input_text, output_text], queue=False).then( | |
| bot, [output_text], [output_text] | |
| ) | |
| demo.queue().launch() | |
| """ | |
| For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference | |
| client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") | |
| def respond( | |
| message, | |
| history: list[tuple[str, str]], | |
| system_message, | |
| max_tokens, | |
| temperature, | |
| top_p, | |
| ): | |
| messages = [{"role": "system", "content": system_message}] | |
| for val in history: | |
| if val[0]: | |
| messages.append({"role": "user", "content": val[0]}) | |
| if val[1]: | |
| messages.append({"role": "assistant", "content": val[1]}) | |
| messages.append({"role": "user", "content": message}) | |
| response = "" | |
| for message in client.chat_completion( | |
| messages, | |
| max_tokens=max_tokens, | |
| stream=True, | |
| temperature=temperature, | |
| top_p=top_p, | |
| ): | |
| token = message.choices[0].delta.content | |
| response += token | |
| yield response | |
| For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface | |
| demo = gr.ChatInterface( | |
| respond, | |
| additional_inputs=[ | |
| gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
| gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
| gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
| gr.Slider( | |
| minimum=0.1, | |
| maximum=1.0, | |
| value=0.95, | |
| step=0.05, | |
| label="Top-p (nucleus sampling)", | |
| ), | |
| ], | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() | |
| """ |