Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -5,58 +5,127 @@ from pyannote.core import Segment, Annotation
|
|
| 5 |
import os
|
| 6 |
from huggingface_hub import login
|
| 7 |
import tempfile
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
# Authenticate with Hugging Face
|
| 10 |
-
HF_TOKEN = os.getenv("HF_TOKEN")
|
| 11 |
-
|
| 12 |
-
login(token=HF_TOKEN)
|
| 13 |
-
else:
|
| 14 |
-
raise ValueError("HF_TOKEN environment variable not set. Please set it in Hugging Face Space settings.")
|
| 15 |
|
| 16 |
-
# Initialize the pyannote pipeline with
|
| 17 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 18 |
pipeline = Pipeline.from_pretrained(
|
| 19 |
"pyannote/speaker-diarization-3.1",
|
| 20 |
-
use_auth_token=
|
| 21 |
-
)
|
| 22 |
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
if not audio_file.endswith('.wav'):
|
| 27 |
-
return "Error: Please upload a WAV file."
|
| 28 |
|
| 29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_file:
|
| 31 |
-
|
| 32 |
temp_file_path = temp_file.name
|
| 33 |
-
|
| 34 |
-
# Perform diarization
|
| 35 |
-
diarization = pipeline(temp_file_path)
|
| 36 |
-
|
| 37 |
-
#
|
| 38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
for turn, _, speaker in diarization.itertracks(yield_label=True):
|
| 40 |
start = turn.start
|
| 41 |
end = turn.end
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
#
|
| 48 |
-
|
| 49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
except Exception as e:
|
| 51 |
-
return f"Error processing audio: {str(e)}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
|
| 53 |
# Create Gradio interface
|
| 54 |
iface = gr.Interface(
|
| 55 |
-
fn=
|
| 56 |
-
inputs=gr.Audio(type="filepath", label="Upload
|
| 57 |
-
outputs=
|
| 58 |
-
|
| 59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
)
|
| 61 |
|
| 62 |
# Launch the interface
|
|
|
|
| 5 |
import os
|
| 6 |
from huggingface_hub import login
|
| 7 |
import tempfile
|
| 8 |
+
import librosa
|
| 9 |
+
import soundfile as sf
|
| 10 |
+
import numpy as np
|
| 11 |
+
import warnings
|
| 12 |
+
|
| 13 |
+
# Suppress torchaudio backend warning
|
| 14 |
+
warnings.filterwarnings("ignore", category=UserWarning, module="pyannote.audio.core.io")
|
| 15 |
|
| 16 |
# Authenticate with Hugging Face
|
| 17 |
+
os.environ["HF_TOKEN"] = os.getenv("HF_TOKEN") # Set in Hugging Face Space secrets
|
| 18 |
+
login(token=os.environ["HF_TOKEN"])
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
+
# Initialize the pyannote pipeline with pre-trained model
|
|
|
|
| 21 |
pipeline = Pipeline.from_pretrained(
|
| 22 |
"pyannote/speaker-diarization-3.1",
|
| 23 |
+
use_auth_token=True
|
| 24 |
+
)
|
| 25 |
|
| 26 |
+
# Optimize for GPU if available
|
| 27 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 28 |
+
pipeline.to(device)
|
|
|
|
|
|
|
| 29 |
|
| 30 |
+
def process_audio(audio_file):
|
| 31 |
+
"""
|
| 32 |
+
Process the input audio file and return diarization results.
|
| 33 |
+
|
| 34 |
+
Args:
|
| 35 |
+
audio_file: Path to the input audio file
|
| 36 |
+
|
| 37 |
+
Returns:
|
| 38 |
+
Tuple containing:
|
| 39 |
+
- Diarization text output
|
| 40 |
+
- Path to visualization plot
|
| 41 |
+
- Number of speakers detected
|
| 42 |
+
"""
|
| 43 |
+
try:
|
| 44 |
+
# Load and preprocess audio
|
| 45 |
+
audio, sr = librosa.load(audio_file, sr=16000, mono=True)
|
| 46 |
+
|
| 47 |
+
# Save temporary audio file in WAV format (pyannote requirement)
|
| 48 |
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_file:
|
| 49 |
+
sf.write(temp_file.name, audio, sr)
|
| 50 |
temp_file_path = temp_file.name
|
| 51 |
+
|
| 52 |
+
# Perform speaker diarization
|
| 53 |
+
diarization = pipeline({"uri": "audio", "audio": temp_file_path})
|
| 54 |
+
|
| 55 |
+
# Clean up temporary file
|
| 56 |
+
os.unlink(temp_file_path)
|
| 57 |
+
|
| 58 |
+
# Process diarization results
|
| 59 |
+
output_text = []
|
| 60 |
+
speakers = set()
|
| 61 |
for turn, _, speaker in diarization.itertracks(yield_label=True):
|
| 62 |
start = turn.start
|
| 63 |
end = turn.end
|
| 64 |
+
output_text.append(
|
| 65 |
+
f"Speaker {speaker}: {start:.2f}s - {end:.2f}s"
|
| 66 |
+
)
|
| 67 |
+
speakers.add(speaker)
|
| 68 |
+
|
| 69 |
+
# Generate visualization
|
| 70 |
+
plot_path = visualize_diarization(diarization, audio, sr)
|
| 71 |
+
|
| 72 |
+
return (
|
| 73 |
+
"\n".join(output_text),
|
| 74 |
+
plot_path,
|
| 75 |
+
len(speakers)
|
| 76 |
+
)
|
| 77 |
+
|
| 78 |
except Exception as e:
|
| 79 |
+
return f"Error processing audio: {str(e)}", None, 0
|
| 80 |
+
|
| 81 |
+
def visualize_diarization(diarization, audio, sr):
|
| 82 |
+
"""
|
| 83 |
+
Create a visualization of the diarization results.
|
| 84 |
+
|
| 85 |
+
Args:
|
| 86 |
+
diarization: Pyannote diarization object
|
| 87 |
+
audio: Audio waveform
|
| 88 |
+
sr: Sample rate
|
| 89 |
+
|
| 90 |
+
Returns:
|
| 91 |
+
Path to saved visualization plot
|
| 92 |
+
"""
|
| 93 |
+
import matplotlib.pyplot as plt
|
| 94 |
+
|
| 95 |
+
plt.figure(figsize=(12, 4))
|
| 96 |
+
|
| 97 |
+
# Plot waveform
|
| 98 |
+
time = np.linspace(0, len(audio)/sr, num=len(audio))
|
| 99 |
+
plt.plot(time, audio, alpha=0.3, color='gray')
|
| 100 |
+
|
| 101 |
+
# Plot diarization segments
|
| 102 |
+
for turn, _, speaker in diarization.itertracks(yield_label=True):
|
| 103 |
+
plt.axvspan(turn.start, turn.end, alpha=0.2, label=f'Speaker {speaker}')
|
| 104 |
+
|
| 105 |
+
plt.xlabel('Time (s)')
|
| 106 |
+
plt.ylabel('Amplitude')
|
| 107 |
+
plt.title('Speaker Diarization')
|
| 108 |
+
plt.legend()
|
| 109 |
+
|
| 110 |
+
# Save plot
|
| 111 |
+
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as temp_plot:
|
| 112 |
+
plt.savefig(temp_plot.name)
|
| 113 |
+
plot_path = temp_plot.name
|
| 114 |
+
|
| 115 |
+
plt.close()
|
| 116 |
+
return plot_path
|
| 117 |
|
| 118 |
# Create Gradio interface
|
| 119 |
iface = gr.Interface(
|
| 120 |
+
fn=process_audio,
|
| 121 |
+
inputs=gr.Audio(type="filepath", label="Upload Audio File"),
|
| 122 |
+
outputs=[
|
| 123 |
+
gr.Textbox(label="Diarization Results"),
|
| 124 |
+
gr.Image(label="Visualization"),
|
| 125 |
+
gr.Number(label="Number of Speakers")
|
| 126 |
+
],
|
| 127 |
+
title="Speaker Diarization with Pyannote 3.1",
|
| 128 |
+
description="Upload an audio file to perform speaker diarization. Results show speaker segments and a visualization."
|
| 129 |
)
|
| 130 |
|
| 131 |
# Launch the interface
|