Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,133 +1,101 @@
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
|
|
|
|
|
|
| 3 |
from pyannote.audio import Pipeline
|
| 4 |
-
from pyannote.core import Segment, Annotation
|
| 5 |
-
import os
|
| 6 |
from huggingface_hub import login
|
| 7 |
-
import tempfile
|
| 8 |
-
import librosa
|
| 9 |
-
import soundfile as sf
|
| 10 |
import numpy as np
|
| 11 |
-
import
|
| 12 |
-
|
| 13 |
-
# Suppress torchaudio backend warning
|
| 14 |
-
warnings.filterwarnings("ignore", category=UserWarning, module="pyannote.audio.core.io")
|
| 15 |
|
| 16 |
-
# Authenticate with
|
| 17 |
-
|
| 18 |
-
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
-
#
|
| 21 |
-
pipeline = Pipeline.from_pretrained(
|
| 22 |
-
"pyannote/speaker-diarization-3.1",
|
| 23 |
-
use_auth_token=True
|
| 24 |
-
)
|
| 25 |
-
|
| 26 |
-
# Optimize for GPU if available
|
| 27 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 28 |
-
pipeline.to(device)
|
| 29 |
|
| 30 |
-
def
|
| 31 |
-
"""
|
| 32 |
-
Process the input audio file and return diarization results.
|
| 33 |
-
|
| 34 |
-
Args:
|
| 35 |
-
audio_file: Path to the input audio file
|
| 36 |
-
|
| 37 |
-
Returns:
|
| 38 |
-
Tuple containing:
|
| 39 |
-
- Diarization text output
|
| 40 |
-
- Path to visualization plot
|
| 41 |
-
- Number of speakers detected
|
| 42 |
-
"""
|
| 43 |
try:
|
| 44 |
-
# Load
|
| 45 |
-
audio
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
#
|
| 59 |
-
|
| 60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
for turn, _, speaker in diarization.itertracks(yield_label=True):
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
except Exception as e:
|
| 79 |
-
return f"Error
|
| 80 |
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
Args:
|
| 86 |
-
diarization: Pyannote diarization object
|
| 87 |
-
audio: Audio waveform
|
| 88 |
-
sr: Sample rate
|
| 89 |
-
|
| 90 |
-
Returns:
|
| 91 |
-
Path to saved visualization plot
|
| 92 |
-
"""
|
| 93 |
-
import matplotlib.pyplot as plt
|
| 94 |
|
| 95 |
-
|
|
|
|
|
|
|
| 96 |
|
| 97 |
-
|
| 98 |
-
time = np.linspace(0, len(audio)/sr, num=len(audio))
|
| 99 |
-
plt.plot(time, audio, alpha=0.3, color='gray')
|
| 100 |
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
# Save plot
|
| 111 |
-
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as temp_plot:
|
| 112 |
-
plt.savefig(temp_plot.name)
|
| 113 |
-
plot_path = temp_plot.name
|
| 114 |
-
|
| 115 |
-
plt.close()
|
| 116 |
-
return plot_path
|
| 117 |
-
|
| 118 |
-
# Create Gradio interface
|
| 119 |
-
iface = gr.Interface(
|
| 120 |
-
fn=process_audio,
|
| 121 |
-
inputs=gr.Audio(type="filepath", label="Upload Audio File"),
|
| 122 |
-
outputs=[
|
| 123 |
-
gr.Textbox(label="Diarization Results"),
|
| 124 |
-
gr.Image(label="Visualization"),
|
| 125 |
-
gr.Number(label="Number of Speakers")
|
| 126 |
-
],
|
| 127 |
-
title="Speaker Diarization with Pyannote 3.1",
|
| 128 |
-
description="Upload an audio file to perform speaker diarization. Results show speaker segments and a visualization."
|
| 129 |
-
)
|
| 130 |
|
| 131 |
-
# Launch the
|
| 132 |
-
|
| 133 |
-
iface.launch()
|
|
|
|
| 1 |
+
import os
|
| 2 |
import gradio as gr
|
| 3 |
import torch
|
| 4 |
+
import torchaudio
|
| 5 |
+
from pydub import AudioSegment
|
| 6 |
from pyannote.audio import Pipeline
|
|
|
|
|
|
|
| 7 |
from huggingface_hub import login
|
|
|
|
|
|
|
|
|
|
| 8 |
import numpy as np
|
| 9 |
+
import json
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
+
# Authenticate with Huggingface
|
| 12 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
| 13 |
+
if HF_TOKEN:
|
| 14 |
+
login(HF_TOKEN)
|
| 15 |
+
else:
|
| 16 |
+
raise ValueError("Huggingface token not found. Set HF_TOKEN environment variable.")
|
| 17 |
|
| 18 |
+
# Load the diarization pipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 20 |
+
pipeline = Pipeline.from_pretrained("pyannote/speaker-diarization-3.0").to(device)
|
| 21 |
|
| 22 |
+
def preprocess_audio(audio_path):
|
| 23 |
+
"""Convert audio to mono, 16kHz WAV format suitable for pyannote."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
try:
|
| 25 |
+
# Load audio with pydub
|
| 26 |
+
audio = AudioSegment.from_file(audio_path)
|
| 27 |
+
# Convert to mono and set sample rate to 16kHz
|
| 28 |
+
audio = audio.set_channels(1).set_frame_rate(16000)
|
| 29 |
+
# Export to temporary WAV file
|
| 30 |
+
temp_wav = "temp_audio.wav"
|
| 31 |
+
audio.export(temp_wav, format="wav")
|
| 32 |
+
return temp_wav
|
| 33 |
+
except Exception as e:
|
| 34 |
+
raise ValueError(f"Error preprocessing audio: {str(e)}")
|
| 35 |
+
|
| 36 |
+
def diarize_audio(audio_path, num_speakers):
|
| 37 |
+
"""Perform speaker diarization and return formatted results."""
|
| 38 |
+
try:
|
| 39 |
+
# Validate inputs
|
| 40 |
+
if not os.path.exists(audio_path):
|
| 41 |
+
raise ValueError("Audio file not found.")
|
| 42 |
+
if not isinstance(num_speakers, int) or num_speakers < 1:
|
| 43 |
+
raise ValueError("Number of speakers must be a positive integer.")
|
| 44 |
+
|
| 45 |
+
# Preprocess audio
|
| 46 |
+
wav_path = preprocess_audio(audio_path)
|
| 47 |
+
|
| 48 |
+
# Load audio for pyannote
|
| 49 |
+
waveform, sample_rate = torchaudio.load(wav_path)
|
| 50 |
+
audio_dict = {"waveform": waveform.to(device), "sample_rate": sample_rate}
|
| 51 |
+
|
| 52 |
+
# Configure pipeline with number of speakers
|
| 53 |
+
pipeline_params = {"num_speakers": num_speakers}
|
| 54 |
+
diarization = pipeline(audio_dict, **pipeline_params)
|
| 55 |
+
|
| 56 |
+
# Format results
|
| 57 |
+
results = []
|
| 58 |
+
text_output = ""
|
| 59 |
for turn, _, speaker in diarization.itertracks(yield_label=True):
|
| 60 |
+
result = {
|
| 61 |
+
"start": round(turn.start, 3),
|
| 62 |
+
"end": round(turn.end, 3),
|
| 63 |
+
"speaker_id": speaker
|
| 64 |
+
}
|
| 65 |
+
results.append(result)
|
| 66 |
+
text_output += f"Speaker {speaker}: {result['start']}s - {result['end']}s\n"
|
| 67 |
+
|
| 68 |
+
# Clean up temporary file
|
| 69 |
+
if os.path.exists(wav_path):
|
| 70 |
+
os.remove(wav_path)
|
| 71 |
+
|
| 72 |
+
# Return text and JSON results
|
| 73 |
+
json_output = json.dumps(results, indent=2)
|
| 74 |
+
return text_output, json_output
|
| 75 |
+
|
| 76 |
except Exception as e:
|
| 77 |
+
return f"Error: {str(e)}", ""
|
| 78 |
|
| 79 |
+
# Gradio interface
|
| 80 |
+
with gr.Blocks() as demo:
|
| 81 |
+
gr.Markdown("# Speaker Diarization with Pyannote 3.0")
|
| 82 |
+
gr.Markdown("Upload an audio file and specify the number of speakers to diarize the audio.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
|
| 84 |
+
with gr.Row():
|
| 85 |
+
audio_input = gr.Audio(label="Upload Audio File", type="filepath")
|
| 86 |
+
num_speakers = gr.Slider(minimum=1, maximum=10, step=1, label="Number of Speakers", value=2)
|
| 87 |
|
| 88 |
+
submit_btn = gr.Button("Diarize")
|
|
|
|
|
|
|
| 89 |
|
| 90 |
+
with gr.Row():
|
| 91 |
+
text_output = gr.Textbox(label="Diarization Results (Text)")
|
| 92 |
+
json_output = gr.Textbox(label="Diarization Results (JSON)")
|
| 93 |
|
| 94 |
+
submit_btn.click(
|
| 95 |
+
fn=diarize_audio,
|
| 96 |
+
inputs=[audio_input, num_speakers],
|
| 97 |
+
outputs=[text_output, json_output]
|
| 98 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
|
| 100 |
+
# Launch the Gradio app
|
| 101 |
+
demo.launch()
|
|
|