Spaces:
Build error
Build error
better visualization
Browse files
app.py
CHANGED
|
@@ -1,6 +1,8 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
from transformers import AutoTokenizer
|
| 3 |
import torch
|
|
|
|
|
|
|
| 4 |
from model import EnergySmellsDetector
|
| 5 |
from config import SMELLS, BEST_THRESHOLD
|
| 6 |
|
|
@@ -8,29 +10,49 @@ TOKENIZER = "microsoft/graphcodebert-base"
|
|
| 8 |
tokenizer = AutoTokenizer.from_pretrained(TOKENIZER)
|
| 9 |
model = EnergySmellsDetector.load_model_from_hf()
|
| 10 |
|
| 11 |
-
|
| 12 |
-
def round_logit(logits, threshold):
|
| 13 |
-
logits = (logits > threshold).to(int)
|
| 14 |
-
return logits.cpu().numpy()
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
def greet(code_snippet):
|
| 18 |
inputs = tokenizer(code_snippet, return_tensors="pt", truncation=True)
|
| 19 |
with torch.no_grad():
|
| 20 |
logits = model(**inputs)[0]
|
| 21 |
-
|
| 22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
|
| 26 |
-
textbox = gr.Textbox(label="Enter your code snippet", placeholder="
|
| 27 |
-
description = "An application to identify whether your code has energy smells or not. It predicts the presence of 9 different energy smells."
|
| 28 |
title = "Energy Smells Detector"
|
|
|
|
| 29 |
|
| 30 |
gr.Interface(
|
| 31 |
title=title,
|
| 32 |
description=description,
|
| 33 |
inputs=textbox,
|
| 34 |
-
fn=
|
| 35 |
-
outputs=
|
|
|
|
|
|
|
|
|
|
| 36 |
).launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
from transformers import AutoTokenizer
|
| 3 |
import torch
|
| 4 |
+
import pandas as pd
|
| 5 |
+
import matplotlib.pyplot as plt
|
| 6 |
from model import EnergySmellsDetector
|
| 7 |
from config import SMELLS, BEST_THRESHOLD
|
| 8 |
|
|
|
|
| 10 |
tokenizer = AutoTokenizer.from_pretrained(TOKENIZER)
|
| 11 |
model = EnergySmellsDetector.load_model_from_hf()
|
| 12 |
|
| 13 |
+
def get_predictions(code_snippet):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
inputs = tokenizer(code_snippet, return_tensors="pt", truncation=True)
|
| 15 |
with torch.no_grad():
|
| 16 |
logits = model(**inputs)[0]
|
| 17 |
+
probs = torch.sigmoid(logits).cpu().numpy().flatten()
|
| 18 |
+
rounded_logits = (probs > BEST_THRESHOLD).astype(int)
|
| 19 |
+
|
| 20 |
+
# Prepare results in a dictionary
|
| 21 |
+
results = {label: {"Detected": bool(pred), "Confidence": round(prob * 100, 2)}
|
| 22 |
+
for label, pred, prob in zip(SMELLS, rounded_logits, probs)}
|
| 23 |
+
|
| 24 |
+
return results, plot_bar_chart(results)
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
def plot_bar_chart(results):
|
| 28 |
+
labels = list(results.keys())
|
| 29 |
+
confidences = [results[label]["Confidence"] for label in labels]
|
| 30 |
|
| 31 |
+
plt.figure(figsize=(8, 4))
|
| 32 |
+
plt.barh(labels, confidences, color=['green' if results[label]["Detected"] else 'red' for label in labels])
|
| 33 |
+
plt.xlabel("Confidence (%)")
|
| 34 |
+
plt.xlim(0, 100)
|
| 35 |
+
plt.title("Energy Smells Detection Confidence")
|
| 36 |
+
plt.gca().invert_yaxis() # Invert y-axis for better readability
|
| 37 |
+
plt.tight_layout()
|
| 38 |
+
img_path = "confidence_chart.png"
|
| 39 |
+
plt.savefig(img_path)
|
| 40 |
+
plt.close()
|
| 41 |
+
|
| 42 |
+
return img_path
|
| 43 |
|
| 44 |
|
| 45 |
+
textbox = gr.Textbox(label="Enter your code snippet", placeholder="Paste your code here...")
|
|
|
|
| 46 |
title = "Energy Smells Detector"
|
| 47 |
+
description = "Analyze your code for potential energy smells. The model detects 9 different energy inefficiencies in your code."
|
| 48 |
|
| 49 |
gr.Interface(
|
| 50 |
title=title,
|
| 51 |
description=description,
|
| 52 |
inputs=textbox,
|
| 53 |
+
fn=get_predictions,
|
| 54 |
+
outputs=[
|
| 55 |
+
gr.Json(label="Detection Results"),
|
| 56 |
+
gr.Image(label="Confidence Bar Chart")
|
| 57 |
+
]
|
| 58 |
).launch()
|