Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,82 +2,92 @@ import cv2
|
|
| 2 |
import torch
|
| 3 |
import gradio as gr
|
| 4 |
import numpy as np
|
| 5 |
-
|
| 6 |
import matplotlib.pyplot as plt
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
# Load YOLOv8 model
|
| 9 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 10 |
-
|
| 11 |
-
model.to(device)
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
while True:
|
| 28 |
-
|
| 29 |
-
ret
|
| 30 |
-
|
| 31 |
-
break # End of video
|
| 32 |
-
|
| 33 |
-
# Resize the frame
|
| 34 |
-
frame = cv2.resize(frame, (new_width, new_height))
|
| 35 |
-
|
| 36 |
-
# Perform inference on the frame
|
| 37 |
-
results = model(frame) # Automatically uses GPU if available
|
| 38 |
-
|
| 39 |
-
# If there are detections
|
| 40 |
-
if len(results[0].boxes) > 0:
|
| 41 |
-
boxes = results[0].boxes.xyxy.cpu().numpy() # Get the bounding boxes
|
| 42 |
-
|
| 43 |
-
# Annotate the frame with bounding boxes
|
| 44 |
-
annotated_frame = results[0].plot()
|
| 45 |
-
|
| 46 |
-
# Convert the frame to RGB
|
| 47 |
-
annotated_frame_rgb = cv2.cvtColor(annotated_frame, cv2.COLOR_BGR2RGB)
|
| 48 |
-
|
| 49 |
-
# Append the frame with detection to list
|
| 50 |
-
frames_with_detections.append(annotated_frame_rgb)
|
| 51 |
-
|
| 52 |
-
# Create a simple bar chart to show the count of detected objects
|
| 53 |
-
fig, ax = plt.subplots()
|
| 54 |
-
ax.bar([1], [len(boxes)], color='blue') # Bar for the current frame detection
|
| 55 |
-
ax.set_xlabel('Frame')
|
| 56 |
-
ax.set_ylabel('Number of Detections')
|
| 57 |
-
ax.set_title('Detection Count per Frame')
|
| 58 |
-
|
| 59 |
-
# Convert plot to an image to return it in Gradio output
|
| 60 |
-
plt.tight_layout()
|
| 61 |
-
plt.close(fig)
|
| 62 |
-
|
| 63 |
-
# Save the plot as an image in memory
|
| 64 |
-
buf = np.frombuffer(fig.canvas.print_to_buffer()[0], dtype=np.uint8)
|
| 65 |
-
img = cv2.imdecode(buf, cv2.IMREAD_COLOR)
|
| 66 |
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
|
| 73 |
# Gradio interface
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
import torch
|
| 3 |
import gradio as gr
|
| 4 |
import numpy as np
|
| 5 |
+
import os
|
| 6 |
import matplotlib.pyplot as plt
|
| 7 |
+
from ultralytics import YOLO, __version__ as ultralytics_version
|
| 8 |
+
|
| 9 |
+
# Debug: Check environment
|
| 10 |
+
print(f"Torch version: {torch.__version__}")
|
| 11 |
+
print(f"Gradio version: {gr.__version__}")
|
| 12 |
+
print(f"Ultralytics version: {ultralytics_version}")
|
| 13 |
+
print(f"CUDA available: {torch.cuda.is_available()}")
|
| 14 |
|
| 15 |
# Load YOLOv8 model
|
| 16 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 17 |
+
print(f"Using device: {device}")
|
| 18 |
+
model = YOLO('./data/best.pt').to(device)
|
| 19 |
+
|
| 20 |
+
def process_video(video, output_folder="detected_frames", plot_graphs=False):
|
| 21 |
+
if video is None:
|
| 22 |
+
return "Error: No video uploaded"
|
| 23 |
+
|
| 24 |
+
# Create output folder if it doesn't exist
|
| 25 |
+
if not os.path.exists(output_folder):
|
| 26 |
+
os.makedirs(output_folder)
|
| 27 |
+
|
| 28 |
+
cap = cv2.VideoCapture(video)
|
| 29 |
+
if not cap.isOpened():
|
| 30 |
+
return "Error: Could not open video file"
|
| 31 |
+
|
| 32 |
+
frame_width, frame_height = 320, 240 # Smaller resolution
|
| 33 |
+
frame_count = 0
|
| 34 |
+
frame_skip = 5 # Process every 5th frame
|
| 35 |
+
max_frames = 100 # Limit for testing
|
| 36 |
+
confidence_scores = [] # Store confidence scores for plotting
|
| 37 |
+
|
| 38 |
while True:
|
| 39 |
+
ret, frame = cap.read()
|
| 40 |
+
if not ret or frame_count > max_frames:
|
| 41 |
+
break
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
|
| 43 |
+
frame_count += 1
|
| 44 |
+
if frame_count % frame_skip != 0:
|
| 45 |
+
continue
|
| 46 |
+
|
| 47 |
+
frame = cv2.resize(frame, (frame_width, frame_height))
|
| 48 |
+
print(f"Processing frame {frame_count}")
|
| 49 |
+
|
| 50 |
+
# Run YOLOv8 inference
|
| 51 |
+
results = model(frame)
|
| 52 |
+
annotated_frame = results[0].plot()
|
| 53 |
+
|
| 54 |
+
# Save annotated frame
|
| 55 |
+
frame_filename = os.path.join(output_folder, f"frame_{frame_count:04d}.jpg")
|
| 56 |
+
cv2.imwrite(frame_filename, annotated_frame)
|
| 57 |
+
|
| 58 |
+
# Collect confidence scores for plotting
|
| 59 |
+
if results[0].boxes is not None:
|
| 60 |
+
confs = results[0].boxes.conf.cpu().numpy()
|
| 61 |
+
confidence_scores.extend(confs)
|
| 62 |
+
|
| 63 |
+
cap.release()
|
| 64 |
+
|
| 65 |
+
# Generate confidence score plot if requested
|
| 66 |
+
graph_path = None
|
| 67 |
+
if plot_graphs and confidence_scores:
|
| 68 |
+
plt.figure(figsize=(10, 5))
|
| 69 |
+
plt.hist(confidence_scores, bins=20, color='blue', alpha=0.7)
|
| 70 |
+
plt.title('Distribution of Confidence Scores')
|
| 71 |
+
plt.xlabel('Confidence Score')
|
| 72 |
+
plt.ylabel('Frequency')
|
| 73 |
+
graph_path = os.path.join(output_folder, "confidence_histogram.png")
|
| 74 |
+
plt.savefig(graph_path)
|
| 75 |
+
plt.close()
|
| 76 |
+
|
| 77 |
+
return f"Frames saved in {output_folder}. {f'Graph saved as {graph_path}' if graph_path else ''}"
|
| 78 |
|
| 79 |
# Gradio interface
|
| 80 |
+
iface = gr.Interface(
|
| 81 |
+
fn=process_video,
|
| 82 |
+
inputs=[
|
| 83 |
+
gr.Video(label="Upload Video"),
|
| 84 |
+
gr.Textbox(label="Output Folder", value="detected_frames"),
|
| 85 |
+
gr.Checkbox(label="Generate Confidence Score Graph", value=False)
|
| 86 |
+
],
|
| 87 |
+
outputs=gr.Text(label="Status"),
|
| 88 |
+
title="YOLOv8 Object Detection - Frames Output",
|
| 89 |
+
description="Upload a short video to save detected frames as images and optionally generate a confidence score graph."
|
| 90 |
+
)
|
| 91 |
+
|
| 92 |
+
if __name__ == "__main__":
|
| 93 |
+
iface.launch()
|