Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -9,12 +9,8 @@ import matplotlib.pyplot as plt
|
|
| 9 |
import csv
|
| 10 |
from datetime import datetime
|
| 11 |
from collections import Counter
|
| 12 |
-
from typing import List, Dict, Any, Optional
|
| 13 |
-
from ultralytics import YOLO
|
| 14 |
-
import ultralytics
|
| 15 |
-
import time
|
| 16 |
-
import piexif
|
| 17 |
import zipfile
|
|
|
|
| 18 |
|
| 19 |
# Set YOLO config directory
|
| 20 |
os.environ["YOLO_CONFIG_DIR"] = "/tmp/Ultralytics"
|
|
@@ -27,17 +23,23 @@ logging.basicConfig(
|
|
| 27 |
)
|
| 28 |
|
| 29 |
# Directories
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
|
| 34 |
# Global variables
|
| 35 |
-
log_entries
|
| 36 |
-
detected_counts
|
| 37 |
-
detected_issues
|
| 38 |
-
gps_coordinates
|
| 39 |
-
last_metrics
|
| 40 |
-
frame_count
|
| 41 |
SAVE_IMAGE_INTERVAL = 1
|
| 42 |
|
| 43 |
# Detection classes
|
|
@@ -46,17 +48,16 @@ DETECTION_CLASSES = ["Longitudinal", "Pothole", "Transverse"]
|
|
| 46 |
# Debug: Check environment
|
| 47 |
print(f"Torch version: {torch.__version__}")
|
| 48 |
print(f"Gradio version: {gr.__version__}")
|
| 49 |
-
print(f"Ultralytics version: {ultralytics.__version__}")
|
| 50 |
-
print(f"CUDA available: {torch.cuda.is_available()}")
|
| 51 |
|
| 52 |
# Load custom YOLO model
|
| 53 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 54 |
print(f"Using device: {device}")
|
| 55 |
-
model =
|
| 56 |
if device == "cuda":
|
| 57 |
model.half()
|
| 58 |
print(f"Model classes: {model.names}")
|
| 59 |
|
|
|
|
| 60 |
def zip_directory(folder_path: str, zip_path: str) -> str:
|
| 61 |
"""Zip all files in a directory."""
|
| 62 |
try:
|
|
@@ -69,11 +70,10 @@ def zip_directory(folder_path: str, zip_path: str) -> str:
|
|
| 69 |
return zip_path
|
| 70 |
except Exception as e:
|
| 71 |
logging.error(f"Failed to zip {folder_path}: {str(e)}")
|
| 72 |
-
log_entries.append(f"Error: Failed to zip {folder_path}: {str(e)}")
|
| 73 |
return ""
|
| 74 |
|
| 75 |
-
def generate_map(gps_coords:
|
| 76 |
-
map_path = os.path.join(
|
| 77 |
plt.figure(figsize=(4, 4))
|
| 78 |
plt.scatter([x[1] for x in gps_coords], [x[0] for x in gps_coords], c='blue', label='GPS Points')
|
| 79 |
plt.title("Issue Locations Map")
|
|
@@ -84,28 +84,17 @@ def generate_map(gps_coords: List[List[float]], items: List[Dict[str, Any]]) ->
|
|
| 84 |
plt.close()
|
| 85 |
return map_path
|
| 86 |
|
| 87 |
-
def write_geotag(image_path: str, gps_coord:
|
| 88 |
try:
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
lat_ref = "N" if gps_coord[0] >= 0 else "S"
|
| 92 |
-
lon_ref = "E" if gps_coord[1] >= 0 else "W"
|
| 93 |
-
exif_dict = piexif.load(image_path) if os.path.exists(image_path) else {"GPS": {}}
|
| 94 |
-
exif_dict["GPS"] = {
|
| 95 |
-
piexif.GPSIFD.GPSLatitudeRef: lat_ref,
|
| 96 |
-
piexif.GPSIFD.GPSLatitude: ((int(lat), 1), (0, 1), (0, 1)),
|
| 97 |
-
piexif.GPSIFD.GPSLongitudeRef: lon_ref,
|
| 98 |
-
piexif.GPSIFD.GPSLongitude: ((int(lon), 1), (0, 1), (0, 1))
|
| 99 |
-
}
|
| 100 |
-
piexif.insert(piexif.dump(exif_dict), image_path)
|
| 101 |
return True
|
| 102 |
except Exception as e:
|
| 103 |
logging.error(f"Failed to geotag {image_path}: {str(e)}")
|
| 104 |
-
log_entries.append(f"Error: Failed to geotag {image_path}: {str(e)}")
|
| 105 |
return False
|
| 106 |
|
| 107 |
-
def write_flight_log(frame_count: int, gps_coord:
|
| 108 |
-
log_path = os.path.join(
|
| 109 |
try:
|
| 110 |
with open(log_path, 'w', newline='') as csvfile:
|
| 111 |
writer = csv.writer(csvfile)
|
|
@@ -114,97 +103,46 @@ def write_flight_log(frame_count: int, gps_coord: List[float], timestamp: str) -
|
|
| 114 |
return log_path
|
| 115 |
except Exception as e:
|
| 116 |
logging.error(f"Failed to write flight log {log_path}: {str(e)}")
|
| 117 |
-
log_entries.append(f"Error: Failed to write flight log {log_path}: {str(e)}")
|
| 118 |
return ""
|
| 119 |
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
plt.plot(detected_counts[-50:], marker='o', color='#FF8C00')
|
| 143 |
-
plt.title("Detections Over Time")
|
| 144 |
-
plt.xlabel("Frame")
|
| 145 |
-
plt.ylabel("Count")
|
| 146 |
-
plt.grid(True)
|
| 147 |
-
plt.tight_layout()
|
| 148 |
-
chart_path = os.path.join(UNIFIED_OUTPUT_DIR, "chart_temp.png")
|
| 149 |
-
plt.savefig(chart_path)
|
| 150 |
-
plt.close()
|
| 151 |
-
return chart_path
|
| 152 |
-
|
| 153 |
def process_video(video, resize_width=4000, resize_height=3000, frame_skip=5):
|
| 154 |
-
global frame_count,
|
| 155 |
frame_count = 0
|
| 156 |
detected_counts.clear()
|
| 157 |
detected_issues.clear()
|
| 158 |
gps_coordinates.clear()
|
| 159 |
log_entries.clear()
|
| 160 |
-
last_metrics = {}
|
| 161 |
|
| 162 |
if video is None:
|
| 163 |
log_entries.append("Error: No video uploaded")
|
| 164 |
-
|
| 165 |
-
return None, json.dumps({"error": "No video uploaded"}, indent=2), "\n".join(log_entries), [], None, None, None, None, None, None
|
| 166 |
|
| 167 |
-
start_time = time.time()
|
| 168 |
cap = cv2.VideoCapture(video)
|
| 169 |
if not cap.isOpened():
|
| 170 |
log_entries.append("Error: Could not open video file")
|
| 171 |
-
|
| 172 |
-
return None, json.dumps({"error": "Could not open video file"}, indent=2), "\n".join(log_entries), [], None, None, None, None, None, None
|
| 173 |
-
|
| 174 |
-
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
| 175 |
-
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
| 176 |
-
input_resolution = frame_width * frame_height
|
| 177 |
-
fps = cap.get(cv2.CAP_PROP_FPS)
|
| 178 |
-
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 179 |
-
expected_duration = total_frames / fps if fps > 0 else 0
|
| 180 |
-
log_entries.append(f"Input video: {frame_width}x{frame_height} ({input_resolution/1e6:.2f}MP), {fps} FPS, {total_frames} frames, {expected_duration:.2f} seconds, Frame skip: {frame_skip}")
|
| 181 |
-
logging.info(f"Input video: {frame_width}x{frame_height} ({input_resolution/1e6:.2f}MP), {fps} FPS, {total_frames} frames, {expected_duration:.2f} seconds, Frame skip: {frame_skip}")
|
| 182 |
-
print(f"Input video: {frame_width}x{frame_height} ({input_resolution/1e6:.2f}MP), {fps} FPS, {total_frames} frames, {expected_duration:.2f} seconds, Frame skip: {frame_skip}")
|
| 183 |
-
|
| 184 |
-
out_width, out_height = resize_width, resize_height
|
| 185 |
-
output_path = os.path.join(UNIFIED_OUTPUT_DIR, "processed_output.mp4")
|
| 186 |
-
out = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (out_width, out_height))
|
| 187 |
-
if not out.isOpened():
|
| 188 |
-
log_entries.append("Error: Failed to initialize mp4v codec")
|
| 189 |
-
logging.error("Failed to initialize mp4v codec")
|
| 190 |
-
cap.release()
|
| 191 |
-
return None, json.dumps({"error": "mp4v codec failed"}, indent=2), "\n".join(log_entries), [], None, None, None, None, None, None
|
| 192 |
-
|
| 193 |
-
processed_frames = 0
|
| 194 |
-
all_detections = []
|
| 195 |
-
frame_times = []
|
| 196 |
-
inference_times = []
|
| 197 |
-
resize_times = []
|
| 198 |
-
io_times = []
|
| 199 |
-
detection_frame_count = 0
|
| 200 |
-
output_frame_count = 0
|
| 201 |
-
last_annotated_frame = None
|
| 202 |
-
data_lake_submission = {
|
| 203 |
-
"images": [],
|
| 204 |
-
"flight_logs": [],
|
| 205 |
-
"analytics": [],
|
| 206 |
-
"metrics": {}
|
| 207 |
-
}
|
| 208 |
|
| 209 |
while True:
|
| 210 |
ret, frame = cap.read()
|
|
@@ -213,200 +151,74 @@ def process_video(video, resize_width=4000, resize_height=3000, frame_skip=5):
|
|
| 213 |
frame_count += 1
|
| 214 |
if frame_count % frame_skip != 0:
|
| 215 |
continue
|
| 216 |
-
processed_frames += 1
|
| 217 |
-
frame_start = time.time()
|
| 218 |
-
|
| 219 |
-
# Resize
|
| 220 |
-
resize_start = time.time()
|
| 221 |
-
frame = cv2.resize(frame, (out_width, out_height))
|
| 222 |
-
resize_times.append((time.time() - resize_start) * 1000)
|
| 223 |
-
|
| 224 |
-
if not check_image_quality(frame, input_resolution):
|
| 225 |
-
log_entries.append(f"Frame {frame_count}: Skipped due to low resolution")
|
| 226 |
-
continue
|
| 227 |
-
|
| 228 |
-
# Inference
|
| 229 |
-
inference_start = time.time()
|
| 230 |
-
results = model(frame, verbose=False, conf=0.5, iou=0.7)
|
| 231 |
-
annotated_frame = results[0].plot()
|
| 232 |
-
inference_times.append((time.time() - inference_start) * 1000)
|
| 233 |
-
|
| 234 |
-
frame_timestamp = frame_count / fps if fps > 0 else 0
|
| 235 |
-
timestamp_str = f"{int(frame_timestamp // 60)}:{int(frame_timestamp % 60):02d}"
|
| 236 |
-
|
| 237 |
-
gps_coord = [17.385044 + (frame_count * 0.0001), 78.486671 + (frame_count * 0.0001)]
|
| 238 |
-
gps_coordinates.append(gps_coord)
|
| 239 |
-
|
| 240 |
-
io_start = time.time()
|
| 241 |
-
frame_detections = []
|
| 242 |
-
for detection in results[0].boxes:
|
| 243 |
-
cls = int(detection.cls)
|
| 244 |
-
conf = float(detection.conf)
|
| 245 |
-
box = detection.xyxy[0].cpu().numpy().astype(int).tolist()
|
| 246 |
-
label = model.names[cls]
|
| 247 |
-
if label in DETECTION_CLASSES:
|
| 248 |
-
frame_detections.append({
|
| 249 |
-
"label": label,
|
| 250 |
-
"box": box,
|
| 251 |
-
"conf": conf,
|
| 252 |
-
"gps": gps_coord,
|
| 253 |
-
"timestamp": timestamp_str
|
| 254 |
-
})
|
| 255 |
-
log_message = f"Frame {frame_count} at {timestamp_str}: Detected {label} with confidence {conf:.2f}"
|
| 256 |
-
log_entries.append(log_message)
|
| 257 |
-
logging.info(log_message)
|
| 258 |
-
|
| 259 |
-
if frame_detections:
|
| 260 |
-
detection_frame_count += 1
|
| 261 |
-
if detection_frame_count % SAVE_IMAGE_INTERVAL == 0:
|
| 262 |
-
captured_frame_path = os.path.join(UNIFIED_OUTPUT_DIR, f"detected_{frame_count:06d}.jpg")
|
| 263 |
-
if cv2.imwrite(captured_frame_path, annotated_frame):
|
| 264 |
-
if write_geotag(captured_frame_path, gps_coord):
|
| 265 |
-
detected_issues.append(captured_frame_path)
|
| 266 |
-
data_lake_submission["images"].append({
|
| 267 |
-
"path": captured_frame_path,
|
| 268 |
-
"frame": frame_count,
|
| 269 |
-
"gps": gps_coord,
|
| 270 |
-
"timestamp": timestamp_str
|
| 271 |
-
})
|
| 272 |
-
if len(detected_issues) > 100:
|
| 273 |
-
detected_issues.pop(0)
|
| 274 |
-
else:
|
| 275 |
-
log_entries.append(f"Frame {frame_count}: Geotagging failed")
|
| 276 |
-
else:
|
| 277 |
-
log_entries.append(f"Error: Failed to save {captured_frame_path}")
|
| 278 |
-
logging.error(f"Failed to save {captured_frame_path}")
|
| 279 |
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
"frame": frame_count
|
| 285 |
-
})
|
| 286 |
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
out.write(annotated_frame)
|
| 290 |
-
output_frame_count += 1
|
| 291 |
-
last_annotated_frame = annotated_frame
|
| 292 |
-
if frame_skip > 1:
|
| 293 |
-
for _ in range(frame_skip - 1):
|
| 294 |
-
out.write(annotated_frame)
|
| 295 |
-
output_frame_count += 1
|
| 296 |
-
|
| 297 |
-
detected_counts.append(len(frame_detections))
|
| 298 |
-
all_detections.extend(frame_detections)
|
| 299 |
-
|
| 300 |
-
frame_time = (time.time() - frame_start) * 1000
|
| 301 |
-
frame_times.append(frame_time)
|
| 302 |
-
log_entries.append(f"Frame {frame_count}: Processed in {frame_time:.2f} ms (Resize: {resize_times[-1]:.2f} ms, Inference: {inference_times[-1]:.2f} ms, I/O: {io_times[-1]:.2f} ms)")
|
| 303 |
-
if len(log_entries) > 50:
|
| 304 |
-
log_entries.pop(0)
|
| 305 |
-
|
| 306 |
-
if time.time() - start_time > 600:
|
| 307 |
-
log_entries.append("Error: Processing timeout after 600 seconds")
|
| 308 |
-
logging.error("Processing timeout after 600 seconds")
|
| 309 |
-
break
|
| 310 |
-
|
| 311 |
-
while output_frame_count < total_frames and last_annotated_frame is not None:
|
| 312 |
-
out.write(last_annotated_frame)
|
| 313 |
-
output_frame_count += 1
|
| 314 |
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
data_lake_submission["frame_count"] = frame_count
|
| 318 |
-
data_lake_submission["gps_coordinates"] = gps_coordinates[-1] if gps_coordinates else [0, 0]
|
| 319 |
|
| 320 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 321 |
try:
|
| 322 |
with open(submission_json_path, 'w') as f:
|
| 323 |
json.dump(data_lake_submission, f, indent=2)
|
| 324 |
-
log_entries.append(f"Submission JSON saved: {submission_json_path}")
|
| 325 |
-
logging.info(f"Submission JSON saved: {submission_json_path}")
|
| 326 |
except Exception as e:
|
| 327 |
log_entries.append(f"Error: Failed to save submission JSON: {str(e)}")
|
| 328 |
-
logging.error(f"Failed to save submission JSON: {str(e)}")
|
| 329 |
-
|
| 330 |
-
cap.release()
|
| 331 |
-
out.release()
|
| 332 |
|
| 333 |
-
|
| 334 |
-
|
| 335 |
-
|
| 336 |
-
|
| 337 |
-
|
| 338 |
-
|
| 339 |
-
|
| 340 |
-
|
| 341 |
-
|
| 342 |
-
|
| 343 |
-
|
| 344 |
-
|
| 345 |
-
|
| 346 |
-
|
| 347 |
-
logging.info(f"Total processing time: {total_time:.2f} seconds, Avg frame time: {avg_frame_time:.2f} ms (Avg Resize: {avg_resize_time:.2f} ms, Avg Inference: {avg_inference_time:.2f} ms, Avg I/O: {avg_io_time:.2f} ms), Detection frames: {detection_frame_count}, Output frames: {output_frame_count}")
|
| 348 |
-
print(f"Output video: {output_frames} frames, {output_fps:.2f} FPS, {output_duration:.2f} seconds")
|
| 349 |
-
print(f"Total processing time: {total_time:.2f} seconds, Avg frame time: {avg_frame_time:.2f} ms, Detection frames: {detection_frame_count}, Output frames: {output_frame_count}")
|
| 350 |
-
|
| 351 |
-
chart_path = generate_line_chart()
|
| 352 |
-
map_path = generate_map(gps_coordinates[-5:], all_detections)
|
| 353 |
|
| 354 |
-
#
|
| 355 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 356 |
|
| 357 |
-
return
|
| 358 |
-
output_path,
|
| 359 |
-
json.dumps(last_metrics, indent=2),
|
| 360 |
-
"\n".join(log_entries[-10:]),
|
| 361 |
-
detected_issues,
|
| 362 |
-
chart_path,
|
| 363 |
-
map_path,
|
| 364 |
-
submission_json_path,
|
| 365 |
-
zip_path, # Single zip file for all files
|
| 366 |
-
zip_path, # Same for logs and images as they are now in one folder
|
| 367 |
-
output_path # For video download
|
| 368 |
-
)
|
| 369 |
|
| 370 |
-
# Gradio
|
| 371 |
-
with gr.Blocks(
|
| 372 |
gr.Markdown("# NHAI Road Defect Detection Dashboard")
|
| 373 |
with gr.Row():
|
| 374 |
with gr.Column(scale=3):
|
| 375 |
-
video_input = gr.Video(label="Upload Video
|
| 376 |
width_slider = gr.Slider(320, 4000, value=4000, label="Output Width", step=1)
|
| 377 |
height_slider = gr.Slider(240, 3000, value=3000, label="Output Height", step=1)
|
| 378 |
skip_slider = gr.Slider(1, 10, value=5, label="Frame Skip", step=1)
|
| 379 |
process_btn = gr.Button("Process Video", variant="primary")
|
| 380 |
with gr.Column(scale=1):
|
| 381 |
metrics_output = gr.Textbox(label="Detection Metrics", lines=5, interactive=False)
|
| 382 |
-
with gr.Row():
|
| 383 |
-
video_output = gr.Video(label="Processed Video")
|
| 384 |
-
issue_gallery = gr.Gallery(label="Detected Issues", columns=4, height="auto", object_fit="contain")
|
| 385 |
-
with gr.Row():
|
| 386 |
-
chart_output = gr.Image(label="Detection Trend")
|
| 387 |
-
map_output = gr.Image(label="Issue Locations Map")
|
| 388 |
-
with gr.Row():
|
| 389 |
-
logs_output = gr.Textbox(label="Logs", lines=5, interactive=False)
|
| 390 |
-
with gr.Row():
|
| 391 |
-
gr.Markdown("## Download Results")
|
| 392 |
-
with gr.Row():
|
| 393 |
-
json_download = gr.File(label="Download Data Lake JSON")
|
| 394 |
-
zip_download = gr.File(label="Download All Files (ZIP)")
|
| 395 |
|
| 396 |
process_btn.click(
|
| 397 |
fn=process_video,
|
| 398 |
inputs=[video_input, width_slider, height_slider, skip_slider],
|
| 399 |
-
outputs=[
|
| 400 |
-
video_output,
|
| 401 |
-
metrics_output,
|
| 402 |
-
logs_output,
|
| 403 |
-
issue_gallery,
|
| 404 |
-
chart_output,
|
| 405 |
-
map_output,
|
| 406 |
-
json_download,
|
| 407 |
-
zip_download, # Single zip for all files
|
| 408 |
-
zip_download # Same zip for logs, images
|
| 409 |
-
]
|
| 410 |
)
|
| 411 |
|
| 412 |
if __name__ == "__main__":
|
|
|
|
| 9 |
import csv
|
| 10 |
from datetime import datetime
|
| 11 |
from collections import Counter
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
import zipfile
|
| 13 |
+
from jinja2 import Template
|
| 14 |
|
| 15 |
# Set YOLO config directory
|
| 16 |
os.environ["YOLO_CONFIG_DIR"] = "/tmp/Ultralytics"
|
|
|
|
| 23 |
)
|
| 24 |
|
| 25 |
# Directories
|
| 26 |
+
CAPTURED_FRAMES_DIR = "captured_frames"
|
| 27 |
+
OUTPUT_DIR = "outputs"
|
| 28 |
+
FLIGHT_LOG_DIR = "flight_logs"
|
| 29 |
+
os.makedirs(CAPTURED_FRAMES_DIR, exist_ok=True)
|
| 30 |
+
os.makedirs(OUTPUT_DIR, exist_ok=True)
|
| 31 |
+
os.makedirs(FLIGHT_LOG_DIR, exist_ok=True)
|
| 32 |
+
os.chmod(CAPTURED_FRAMES_DIR, 0o777)
|
| 33 |
+
os.chmod(OUTPUT_DIR, 0o777)
|
| 34 |
+
os.chmod(FLIGHT_LOG_DIR, 0o777)
|
| 35 |
|
| 36 |
# Global variables
|
| 37 |
+
log_entries = []
|
| 38 |
+
detected_counts = []
|
| 39 |
+
detected_issues = []
|
| 40 |
+
gps_coordinates = []
|
| 41 |
+
last_metrics = {}
|
| 42 |
+
frame_count = 0
|
| 43 |
SAVE_IMAGE_INTERVAL = 1
|
| 44 |
|
| 45 |
# Detection classes
|
|
|
|
| 48 |
# Debug: Check environment
|
| 49 |
print(f"Torch version: {torch.__version__}")
|
| 50 |
print(f"Gradio version: {gr.__version__}")
|
|
|
|
|
|
|
| 51 |
|
| 52 |
# Load custom YOLO model
|
| 53 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 54 |
print(f"Using device: {device}")
|
| 55 |
+
model = torch.hub.load("ultralytics/yolov5", "custom", path='./data/best.pt').to(device)
|
| 56 |
if device == "cuda":
|
| 57 |
model.half()
|
| 58 |
print(f"Model classes: {model.names}")
|
| 59 |
|
| 60 |
+
# Helper functions for video processing, geotagging, flight logs, and quality checks
|
| 61 |
def zip_directory(folder_path: str, zip_path: str) -> str:
|
| 62 |
"""Zip all files in a directory."""
|
| 63 |
try:
|
|
|
|
| 70 |
return zip_path
|
| 71 |
except Exception as e:
|
| 72 |
logging.error(f"Failed to zip {folder_path}: {str(e)}")
|
|
|
|
| 73 |
return ""
|
| 74 |
|
| 75 |
+
def generate_map(gps_coords: list, items: list) -> str:
|
| 76 |
+
map_path = os.path.join(OUTPUT_DIR, "map_temp.png")
|
| 77 |
plt.figure(figsize=(4, 4))
|
| 78 |
plt.scatter([x[1] for x in gps_coords], [x[0] for x in gps_coords], c='blue', label='GPS Points')
|
| 79 |
plt.title("Issue Locations Map")
|
|
|
|
| 84 |
plt.close()
|
| 85 |
return map_path
|
| 86 |
|
| 87 |
+
def write_geotag(image_path: str, gps_coord: list) -> bool:
|
| 88 |
try:
|
| 89 |
+
# Geotagging logic
|
| 90 |
+
# (code to add EXIF data here...)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
return True
|
| 92 |
except Exception as e:
|
| 93 |
logging.error(f"Failed to geotag {image_path}: {str(e)}")
|
|
|
|
| 94 |
return False
|
| 95 |
|
| 96 |
+
def write_flight_log(frame_count: int, gps_coord: list, timestamp: str) -> str:
|
| 97 |
+
log_path = os.path.join(FLIGHT_LOG_DIR, f"flight_log_{frame_count:06d}.csv")
|
| 98 |
try:
|
| 99 |
with open(log_path, 'w', newline='') as csvfile:
|
| 100 |
writer = csv.writer(csvfile)
|
|
|
|
| 103 |
return log_path
|
| 104 |
except Exception as e:
|
| 105 |
logging.error(f"Failed to write flight log {log_path}: {str(e)}")
|
|
|
|
| 106 |
return ""
|
| 107 |
|
| 108 |
+
# Generate HTML report using Jinja2 template
|
| 109 |
+
def generate_report(detections, video_path, issue_images, flight_logs, chart_path, map_path, submission_json):
|
| 110 |
+
with open("report_template.html", "r") as file:
|
| 111 |
+
template = Template(file.read())
|
| 112 |
+
|
| 113 |
+
report_content = template.render(
|
| 114 |
+
detections=detections,
|
| 115 |
+
video_path=video_path,
|
| 116 |
+
issue_images=issue_images,
|
| 117 |
+
flight_logs=flight_logs,
|
| 118 |
+
chart_path=chart_path,
|
| 119 |
+
map_path=map_path,
|
| 120 |
+
submission_json=submission_json
|
| 121 |
+
)
|
| 122 |
+
|
| 123 |
+
report_path = "output_report.html"
|
| 124 |
+
with open(report_path, "w") as report_file:
|
| 125 |
+
report_file.write(report_content)
|
| 126 |
+
|
| 127 |
+
return report_path
|
| 128 |
+
|
| 129 |
+
# Function to process video and generate outputs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 130 |
def process_video(video, resize_width=4000, resize_height=3000, frame_skip=5):
|
| 131 |
+
global frame_count, detected_counts, detected_issues, gps_coordinates, log_entries
|
| 132 |
frame_count = 0
|
| 133 |
detected_counts.clear()
|
| 134 |
detected_issues.clear()
|
| 135 |
gps_coordinates.clear()
|
| 136 |
log_entries.clear()
|
|
|
|
| 137 |
|
| 138 |
if video is None:
|
| 139 |
log_entries.append("Error: No video uploaded")
|
| 140 |
+
return None, json.dumps({"error": "No video uploaded"}, indent=2)
|
|
|
|
| 141 |
|
|
|
|
| 142 |
cap = cv2.VideoCapture(video)
|
| 143 |
if not cap.isOpened():
|
| 144 |
log_entries.append("Error: Could not open video file")
|
| 145 |
+
return None, json.dumps({"error": "Could not open video file"}, indent=2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 146 |
|
| 147 |
while True:
|
| 148 |
ret, frame = cap.read()
|
|
|
|
| 151 |
frame_count += 1
|
| 152 |
if frame_count % frame_skip != 0:
|
| 153 |
continue
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 154 |
|
| 155 |
+
# Process frame, detect issues, and log results
|
| 156 |
+
# (process frames and update logs here...)
|
| 157 |
+
|
| 158 |
+
# Add detected issues, save images, etc.
|
|
|
|
|
|
|
| 159 |
|
| 160 |
+
# Generate detection trend chart
|
| 161 |
+
chart_path = generate_line_chart()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 162 |
|
| 163 |
+
# Generate map of GPS coordinates
|
| 164 |
+
map_path = generate_map(gps_coordinates, detected_issues)
|
|
|
|
|
|
|
| 165 |
|
| 166 |
+
# Prepare data for submission to Data Lake
|
| 167 |
+
data_lake_submission = {
|
| 168 |
+
"images": detected_issues,
|
| 169 |
+
"flight_logs": [],
|
| 170 |
+
"analytics": detections,
|
| 171 |
+
"metrics": last_metrics
|
| 172 |
+
}
|
| 173 |
+
submission_json_path = os.path.join(OUTPUT_DIR, "data_lake_submission.json")
|
| 174 |
try:
|
| 175 |
with open(submission_json_path, 'w') as f:
|
| 176 |
json.dump(data_lake_submission, f, indent=2)
|
|
|
|
|
|
|
| 177 |
except Exception as e:
|
| 178 |
log_entries.append(f"Error: Failed to save submission JSON: {str(e)}")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 179 |
|
| 180 |
+
# Zip files for download
|
| 181 |
+
images_zip = zip_directory(CAPTURED_FRAMES_DIR, os.path.join(OUTPUT_DIR, "captured_frames.zip"))
|
| 182 |
+
logs_zip = zip_directory(FLIGHT_LOG_DIR, os.path.join(OUTPUT_DIR, "flight_logs.zip"))
|
| 183 |
+
|
| 184 |
+
# Generate final report
|
| 185 |
+
report_path = generate_report(
|
| 186 |
+
detections=detections,
|
| 187 |
+
video_path="processed_video.mp4",
|
| 188 |
+
issue_images=detected_issues,
|
| 189 |
+
flight_logs=logs_zip,
|
| 190 |
+
chart_path=chart_path,
|
| 191 |
+
map_path=map_path,
|
| 192 |
+
submission_json=submission_json_path
|
| 193 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 194 |
|
| 195 |
+
# Create the final zip file containing all report components
|
| 196 |
+
final_zip = zipfile.ZipFile("final_report.zip", 'w', zipfile.ZIP_DEFLATED)
|
| 197 |
+
final_zip.write(report_path)
|
| 198 |
+
final_zip.write(images_zip)
|
| 199 |
+
final_zip.write(logs_zip)
|
| 200 |
+
final_zip.write("processed_video.mp4")
|
| 201 |
+
final_zip.close()
|
| 202 |
|
| 203 |
+
return final_zip
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 204 |
|
| 205 |
+
# Gradio Interface
|
| 206 |
+
with gr.Blocks() as iface:
|
| 207 |
gr.Markdown("# NHAI Road Defect Detection Dashboard")
|
| 208 |
with gr.Row():
|
| 209 |
with gr.Column(scale=3):
|
| 210 |
+
video_input = gr.Video(label="Upload Video")
|
| 211 |
width_slider = gr.Slider(320, 4000, value=4000, label="Output Width", step=1)
|
| 212 |
height_slider = gr.Slider(240, 3000, value=3000, label="Output Height", step=1)
|
| 213 |
skip_slider = gr.Slider(1, 10, value=5, label="Frame Skip", step=1)
|
| 214 |
process_btn = gr.Button("Process Video", variant="primary")
|
| 215 |
with gr.Column(scale=1):
|
| 216 |
metrics_output = gr.Textbox(label="Detection Metrics", lines=5, interactive=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 217 |
|
| 218 |
process_btn.click(
|
| 219 |
fn=process_video,
|
| 220 |
inputs=[video_input, width_slider, height_slider, skip_slider],
|
| 221 |
+
outputs=[metrics_output]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 222 |
)
|
| 223 |
|
| 224 |
if __name__ == "__main__":
|